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Executive Summary 
 
MARCO-BOLO Task 5.3 “Spatial mapping of blue carbon benefits” evaluates how satellite 
remote sensing can advance the mapping of blue carbon stocks across Europe, with a 
particular focus on seagrass meadows due to their importance for the European region. This 
work responds to the urgent need for robust, scalable approaches to quantify and monitor 
carbon stocks in European coastal habitats, supporting emerging policy and reporting 
requirements.  
 
Our approach integrated five core activities:  

1. Synthesising the scientific literature on remote sensing applications for seagrass 
carbon mapping. 

2. Collaborating with MPA-EUROPE to compile and publish the EURO-CARBON 
database, the most comprehensive collection of organic carbon measurements for 
coastal habitats in Europe. 

3. Pairing large-scale environmental datasets from NASA and Copernicus with in situ 
sediment carbon measurements, enabling spatially explicit modelling.  

4. Engaging stakeholders through co-design sessions to ensure scientific outputs align 
with policy and management needs.  

5. Developing and testing predictive models for seagrass carbon stocks using 
environmental variables.  

 
Our models demonstrated high explanatory power (R² > 0.8), identifying bottom 
temperature, sea surface wave height, phosphate concentration, near-surface pH, and 
remote sensing reflectance at 443 nm as key predictors. Notably, using organic carbon density 
as the response variable improved model performance and policy relevance.  
 
We conclude that satellite remote sensing and global oceanographic data products already 
provide substantial opportunities for evaluating and monitoring blue carbon services in 
seagrass beds. Anticipated advances—including new satellite missions and enhanced 
computational capabilities—will further increase these opportunities.  
 
Currently, no countries in Europe have included seagrass beds in their emission inventories 
and climate plans, despite the prevalence of seagrasses along many coastlines. From 2026, 
reporting of wetlands under LULUCF may become mandatory for EU member states, but 
whether this will apply to seagrass beds depends on if member states consider them as 
“managed” marine ecosystems. Either way, policy needs for reporting carbon stocks are 
growing, and we show that remote sensing and global oceanographic data products can 
contribute substantially to mapping blue carbon benefits in Europe.  
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1. Introduction 

1.1 What is Blue Carbon? 
The term “blue carbon” was first introduced by Nellemann et al. (2009), who defined it as the 
carbon captured and stored by coastal and marine ecosystems dominated by rooted 
vegetation. Over time, the definition of blue carbon has evolved. The Intergovernmental 
Panel on Climate Change (IPCC), in its Sixth Assessment Report (AR6), defines blue carbon 
more broadly as “biologically driven carbon fluxes and storage in marine systems that are 
amenable to management” (IPCC, 2022). For climate mitigation, however, “actionable” blue 
carbon ecosystems remain mangroves, seagrass meadows, and salt marshes (Schindler 
Murray et al. 2023). 

1.2 Blue Carbon Ecosystems: What they are and why they matter 
Mangroves, seagrass meadows, and salt marshes are vegetated coastal habitats recognized 
for their remarkable ability to sequester and store atmospheric carbon dioxide (CO₂) in both 
their biomass and underlying sediments. Despite covering a relatively small fraction of the 
Earth’s surface, these ecosystems account for disproportionately high rates of carbon burial, 
making them critical components in the global carbon cycle and highly relevant to climate 
change mitigation strategies. The inclusion of blue carbon ecosystems in national climate 
strategies is made possible through internationally recognized methodologies for carbon 
accounting, particularly those outlined in the 2013 IPCC Wetlands Supplement (IPCC, 2014). 
These methodologies enable countries to integrate coastal wetlands into their Nationally 
Determined Contributions (NDCs) under the Paris Agreement, report them in national 
greenhouse gas inventories, and potentially engage in voluntary carbon markets.  
 
Despite the existence of guidelines, there is a recognized lack of technical capacity for 
including blue carbon into national greenhouse gas inventories. Currently, few countries are 
implementing the 2013 IPCC Wetlands Supplement and using it to inform their NDCs 
(Schindler Murray et al., 2023). A key barrier to realizing the full climate potential of blue 
carbon ecosystems lies in the limited capacity for measurement, reporting, and verification 
(MRV) and reliable assessments of carbon stocks and fluxes (Schindler Murray et al., 2023).  
 
Beyond carbon storage capabilities, blue carbon ecosystems provide a range of 
multifunctional ecosystem services that support environmental integrity and human well-
being, such as coastal protection from wave energy and erosion, water quality enhancement, 
fishery support through habitat provisioning, and biodiversity support (Valiela et al., 2002; 
Lee et al., 2014; Maxwell et al., 2017). Blue carbon ecosystems are embedded within multiple 
policy and conservation frameworks, representing a conservation priority within the 
European Union (EU). These ecosystems are also protected under several legal instruments, 
including the EU Habitats Directive (92/43/EEC), the Bern Convention (Annex I – habitat types 
of community interest and Annex II – Strictly Protected Flora Species), the Marine Strategy 
Framework Directive (2008/56/EC), and the Ramsar Convention on Wetlands. Integrating 
blue carbon strategies into broader marine and coastal zone management planning 
frameworks can help align biodiversity, climate, and development goals.  
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1.3 A focus on seagrass ecosystems: Structure, Functions, and Importance 
We have decided to focus on seagrass meadows because less work has been done on 
valuation of carbon stocks in seagrasses compared to mangroves and they are more relevant 
for the European context.  
 
Ecologically, seagrass meadows are considered one of the most productive and valuable 
marine ecosystems (Hemminga & Duarte, 2000). Seagrasses are submerged marine flowering 
plants that form extensive meadows in shallow coastal waters across temperate and tropical 
regions. They provide a broad range of ecosystem services (e.g., carbon sequestration, coastal 
protection through wave energy attenuation, water quality improvement, biodiversity 
support, fisheries enhancement) and contribute to food security for many coastal 
communities (Ondiviela et al., 2014). Seagrass meadows are found along many European 
coastlines and are limited to few species (Figure 1).  
 

 
Figure 1. Map of seagrass meadows in Europe (data courtesy of UNEP World Conservation 
Monitoring Centre) and images of European seagrass species. Image credit: Bernat Garrigos 
for C. nodosa, Roberto Pillon for P. oceanica, Dan Mele for H. stipulacea, Dimitar Nikolov 
Berov for Z. noltei, and Erling Svensen for Z. marina.  
 
Although seagrasses store less carbon in their above-ground biomass compared to mangroves 
or salt marshes, they are highly efficient at long-term carbon burial in sediments, often under 
anoxic conditions that slow decomposition and enhance carbon retention. Despite covering 
only 0.1% of the global seafloor, seagrass meadows are estimated to account for 10–18% of 
total oceanic carbon burial, highlighting their outsized contribution to the global carbon cycle 
(Duarte et al., 2013).  
 
Despite their importance, seagrasses are experiencing global declines, largely driven by 
anthropogenic pressures (e.g., coastal development, pollution, boating and anchoring) as well 
as the wider impacts of climate change (Waycott et al., 2009). When these ecosystems are 
fragmented or destroyed, the previously stored carbon can be released back into the 
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atmosphere, with implications for national carbon budgets. Globally these losses could 
amount to 299 Tg of carbon released per year if the rate of seagrass loss continued and 
organic carbon from the seagrass biomass and top metre of soil was remineralized 
(Fourqurean et al., 2012).  
 
While 95 countries referenced blue carbon ecosystems in their most recent NDC submissions, 
only 8 made explicit mention of seagrasses, highlighting ongoing gaps in policy inclusion, 
technical capacity, and ecosystem valuation (Khan et al., 2022). The Blue Carbon Initiative, 
provides the following carbon stock values for the top 1 m of sediment in seagrass beds: global 
mean (108 Mg Corg ha-1), and a range of 10-829 Mg Corg ha-1 (Howard et al. 2014), which can 
be used for Tier 1 estimation of blue carbon storage.  

1.4 Study aims and scientific questions 
The high costs and capacity limitations associated with monitoring and verification of blue 
carbon projects, as well as the lack or inaccessibility of belowground carbon estimation, 
weaken the ability of carbon markets to fund blue carbon ecosystem restoration and 
conservation and nations to report data from seagrass beds in their national climate 
commitments (Schindler Murray et al., 2023). To address this challenge, we examine how the 
growing availability of satellite data and oceanographic data products can contribute to 
seagrass blue carbon stock assessments in the European region.  
 
We ask: which environmental variables have the most robust statistical relationships with 
carbon storage in seagrass beds and how well can this combination of environmental 
variables predict seagrass carbon storage for the European region?  
 

2. Methods 
Five key activities were undertaken to accomplish T5.3: a literature review, a collaborative 
blue carbon database assembly, environmental data matching to pair carbon-relevant large-
scale oceanographic data products with in-situ seagrass organic carbon measurements, co-
production activities with relevant stakeholders, and model development and testing for 
estimating seagrass blue carbon stocks (Figure 2). We provide a brief narrative describing 
these activities and the task evolution.  

Activity 1: Given the scientific developments in the blue carbon field between when the 
proposal was written and now, we undertook a literature review to determine the state of 
the art in remote sensing applications for seagrass mapping and blue carbon estimation. The 
review included the keywords: “seagrasses”, “remote sensing”, “blue carbon”, and “carbon 
proxies”. Over 80 scientific papers and reviews, encompassing more than 300 individual 
studies, were identified and examined. The types of publication ranged from remote sensing 
methodologies (used mainly to map seagrasses distribution) to different methods to assess 
carbon sequestration. These works detail a variety of remote sensing methodologies, ranging 
from satellite to unmanned aerial vehicles, used to map coastal vegetated habitats. A 
synthesis of the literature review is presented in section 3.1.  
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Activity 2: During the literature review, we identified that one of the key knowledge gaps was 
the lack of robust correlations between variables that can be remotely sensed and seagrass 
carbon storage. To address this knowledge gap, we initiated the development of a European 
dataset on blue carbon habitats, but then learned that a similar task had recently already 
been initiated by the MPA-Europe HEU project. To avoid duplication of efforts and ensure 
efficient use of MARCO-BOLO resources, a collaboration was established. T5.3 extracted over 
16,000 relevant data points that contributed to the development and publication  of the 
EURO-CARBON database (Graversen et al., 2025), which contains a total of 61,306 data 
entries for sediment organic carbon content measurements in Europe (expanded on in 
section 3.2).  
 

 

Figure 2. An overview of the five components that were undertaken as part of Task 5.3. 

Activity 3: The results of the literature review (Activity 1) were used to assess which large-
scale data products from NASA and Copernicus would contain relevant environmental 
variables to explain variation in seagrass sediment organic carbon content in Europe. Only 
data products that provided European-wide coverage were selected. Data were downloaded 
from the NASA Earth Data Level 3 & 4 Browser (https://oceandata.sci.gsfc.nasa.gov/l3/) and 
the Copernicus Marine Data Store (https://data.marine.copernicus.eu/products). We assume 
that seagrass carbon storage is a function of long-term processes, therefore the full multi-
year dataset was extracted for each data product (expanded on in section 3.3). A 
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representative value was extracted from each environmental dataset based on the location 
of the seagrass carbon samples in the EURO-CARBON database. Most commonly, the mean 
value was calculated, however, extreme values were also calculated (e.g., 5th, 10th, 90th, or 
95th percentile) for certain variables. Each seagrass sample was also assigned to one of five 
regions (Baltic Sea, Black Sea, Mediterranean Sea, North European Atlantic, South European 
Atlantic). This resulted in a spatially matched dataset of 42 continuous environmental co-
variates and a regional categorical variable for the 4,233 seagrass carbon samples in the 
EURO-CARBON database. This dataset was then used for model development in Activity 5.   
 
Activity 4: In order to ensure that the scientific component of the work aligned with 
stakeholder needs, we presented our task to relevant stakeholders during two events as part 
of the MARCO-BOLO Community of Practice under WP6. A short presentation on the task 
activities was given during the 1st CoP event on making marine and coastal biodiversity 
observations policy relevant on May 23, 2024. A more in-depth stakeholder consultation was 
held during a co-creation session specific to Task 5.3 on June 27, 2025. Key points from these 
stakeholder consultations are expanded on in section 3.4. Stakeholder feedback directly 
affected decisions taken in Activity 5 regarding the response variable selected and sample 
depths considered.  
 
Activity 5: Using the paired dataset of seagrass sediment carbon measurements and potential 
environmental predictor variables developed in Activity 3, we tested a suite of models to 
identify which environmental variables have the most robust statistical relationships with 
seagrass carbon storage. Both machine learning (Gaussian Process Regression, Decision Tree, 
and Neural Network) and non-machine learning methods (Random Forest and Generalised 
Additive Model) were tested. Non-machine learning models were implemented in the 
programming language R, and machine-learning models were developed and tested in the 
MATLAB Regression Learner R2024a toolkit.  For each model, we examined model 
performance and variable importance in order to identify an appropriate reduced model that 
still offered high predictive ability for seagrass carbon density.  
 

3. Results 

3.1 Literature review 
The literature review revealed a rapidly growing body of research on remote sensing 
applications for seagrass mapping and blue carbon estimation. Coverage, biomass, and 
density emerged as the most frequently used proxies for estimating blue carbon stocks. 
However, the literature synthesis highlighted a lack of robust, standardized relationships 
between remotely-sensed variables (e.g., above-ground biomass, canopy coverage) and 
actual carbon storage within seagrass meadows. Furthermore, methodologies for estimating 
blue carbon were often inconsistent across studies, complicating comparative analyses and 
model calibration.  
 
3.1.1. What variables affect carbon storage in seagrass beds? 
Seagrass ecosystems store organic carbon in both aboveground and belowground 
components. Aboveground biomass includes living and dead plant material such as leaves, 
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while belowground carbon is primarily stored in roots, rhizomes, and sediments. Evaluating 
carbon storage is more challenging in seagrass beds than terrestrial forests because a large 
fraction of the organic carbon is stored in the organic-rich soils and not in the living plant 
biomass. Based on global data, only ~1.3% of the total carbon was stored in the living seagrass 
biomass compared to ~98.7% in the soil (Fourqurean et al., 2012).  
 
The capacity of a seagrass bed to act as a carbon sink varies considerably across sites and is 
influenced by a range of biotic and abiotic variables. Mazarrasa et al. (2018) concluded that 
dominance of large-sized species, high canopy complexity, continuous meadow landscape, 
complex and stable biotic interactions, sheltered conditions, low turbidity, shallow water 
depth, and low but not limited nutrient availability positively affected long-term carbon 
storage in seagrass beds. In contrast, eutrophication, habitat fragmentation, altered biotic 
interactions, and climate change effects were threats to long-term carbon storage. In the 
Florida Gulf Coast, seagrass carbon storage was positively correlated with seagrass cover, 
proximity to oyster reefs, and distance from river outlets (McHenry et al., 2023). On the 
Turneffe Atoll in Belize, organic carbon stocks were highest in seagrass beds that were 
sheltered with low wind and wave energy, but seagrass canopy cover was not a significant 
predictor of carbon stocks (Felgate et al., 2024). Globally, coastal geomorphology and species 
identity is an influential driver of differences in seagrass organic carbon stocks, but only 
Posidonia oceanica is characterized by significantly higher carbon stocks whereas other 
species show very high intraspecific variation (Kennedy et al., 2022). An overview of key 
abiotic and biotic factors is provided below. 
 

● Biotic Factors 
 

Species composition: Different seagrass species exhibit varying growth forms, productivity, 
and root/rhizome structures, which influence both biomass accumulation and sediment 
trapping capacity. 
 
Canopy complexity and biomass: Denser and more structurally complex meadows typically 
enhance sediment stabilization and organic matter retention, promoting greater carbon 
burial. 
 
Primary productivity: Higher photosynthetic rates and net primary productivity increase 
organic input to sediments, boosting long-term carbon storage. 
 
Associated biota: Faunal interactions, such as those with herbivores, epiphytes, or 
bioturbating organisms, can influence sediment dynamics, decomposition rates, and nutrient 
cycling. 
 

● Abiotic Factors 
 

Sediment characteristics: Grain size, organic matter content, porosity, and redox conditions 
strongly influence the potential for carbon accumulation and long-term burial. 
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Hydrodynamic energy: Water movement influences sediment deposition and erosion. Low-
energy environments generally favor carbon retention, while high-energy areas may reduce 
burial efficiency through resuspension. 
 
Water quality: Nutrient concentrations, turbidity, and dissolved oxygen levels impact seagrass 
growth and sediment chemistry, affecting both carbon input and stability. 
 
Climate and geomorphology: Temperature, salinity, sea level changes, and geomorphological 
features (e.g., coastal slope, proximity to estuaries or reef systems) shape seagrass 
distribution and the physical processes governing carbon storage. 
 
Landscape context: Seagrass beds adjacent to salt marshes, mangroves, or oyster reefs may 
benefit from synergistic effects, such as enhanced sediment trapping and nutrient cycling, 
which can increase their overall carbon sequestration potential. 
 
Given the identified importance of certain abiotic and large-scale environmental drivers in 
explaining differences in seagrass organic carbon storage, these variables may be promising 
predictors for European seagrass organic carbon storage.   
 
3.1.2. Remote sensing contributions to seagrass carbon stock mapping 
Seagrass carbon storage is typically measured through field sampling of sediment cores, 
which provides accurate data but is costly, time-consuming, and destructive. Increasing 
access to open-source satellite imagery (e.g., Sentinel-2 and Landsat) and advances in cloud 
computing and machine learning (Traganos et al., 2022) now offer promising tools for 
assessing blue carbon stocks remotely. 
 
Remote sensing includes data collected via drones, aircraft, and satellites—both from free 
and commercial sources. Over the past 50 years, methods for mapping seagrass beds have 
evolved from aerial photography to sophisticated satellite-based mapping (Dekker et al., 
2006; Kutser et al., 2020). Tools like Landsat 8 and Sentinel-2 have been widely used to map 
seagrass beds, whereas medium-resolution sensors (e.g., MODIS, Sentinel-3) are less suitable 
due to the patchy nature of seagrass habitats. The seagrass species Posidonia oceanica has 
received most attention in remote sensing studies, mainly because of its high ecological 
importance as a priority Mediterranean habitat and the feasibility of mapping its extensive 
meadows cost-effectively using satellite imagery (e.g., Borfecchia et al., 2019; Cozza et al., 
2019; Matarrese et al., 2008; Traganos and Reinartz, 2018; Fornes et al. 2006). 

Mapping seagrass via satellite is challenging due to the optically complex properties of the 
coastal zone (Dekker et al., 2006). Factors like water turbidity and depth can limit the 
detection of seagrasses. In clear, calm waters, seagrass has been detected down to 40 m using 
Landsat-8 (Topouzelis et al., 2018), while combining aerial imagery and side-scan sonar has 
proven effective for mapping seagrass species in deeper areas (Pasqualini et al., 1998). 
Distinguishing between seagrass species using satellite data is also difficult. While some 
spectral bands (Coastal, Blue, Green, Red) can help (Traganos and Reinartz, 2018), they may 
not be sufficient in diverse or mixed beds (e.g., Knudby and Nordlund, 2011). Hyperspectral 
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sensors and pigment-specific spectral features offer potential improvements (Traganos and 
Reinartz, 2018), and building a global spectral library for seagrass has been proposed to 
support this effort (Dekker et al., 2006). 

Recent studies show high accuracy in using satellite data to map seagrass presence/absence 
(Traganos and Reinartz, 2018) and percent cover (Carpenter et al., 2022). For example, in 
Belize’s Turneffe Atoll, a three-step approach using field data, UAV imagery, and Sentinel-2 
produced a detailed map of seagrass cover, which is now accessible to coastal managers via 
Google Earth Engine (Carpenter et al., 2022). Advances in artificial intelligence machine 
learning models have also supported the development of more powerful models for mapping 
the extent of seagrass meadows. In the Mediterranean, deep learning models applied to 
Sentinel-2 data achieved 74–92% accuracy in mapping P. oceanica (Chowdhury et al., 2024). 

While remote sensing is well-established for mapping seagrass extent, its use in estimating 
carbon stocks is still developing. One common method to estimate total carbon storage 
involves applying published carbon density values to seagrass extent maps. For example, 
Traganos et al. (2022) used Sentinel-2 data to map P. oceanica across the Mediterranean 
(19,020 km²) and estimated 722 million MgC stored in shallow waters. Similarly, Felgate et al. 
(2024) applied this approach in Belize’s Turneffe Atoll but noted that seagrass in turbid waters 
are missed by optical sensors, affecting subsequent carbon estimates. A recent review by 
Simpson et al. (2022) identified above-ground biomass, percent cover, Leaf Area Index (LAI), 
and Normalized Difference Vegetation Index (NDVI) for intertidal zones, as useful proxies that 
could support carbon stock estimation. However, this relies on the assumption that the 
proxies reflect below-ground carbon, which is not always valid. In Belize’s Turneffe Atoll, no 
significant correlation was found between canopy cover and sediment carbon content 
(Felgate et al., 2024). Remote sensing can also help identify seagrass species and track 
seasonal growth patterns (Simpson et al., 2022). Yet, species identification alone has limited 
value for carbon estimates, as only P. oceanica consistently shows higher carbon storage 
(Kennedy et al., 2022). Simpson et al. (2022) also highlighted that spatial continuity and 
persistence of seagrass beds—both detectable via satellite—are linked to higher carbon 
stocks. Other key drivers of carbon burial like sediment grain size and sedimentation rate 
(Ricart et al., 2020) cannot be directly measured by satellites.  

Given the abundant work already done on using remote sensing for seagrass mapping, our 
work focuses on how satellite and regional-scale environmental data can inform local 
conditions relevant to carbon storage and identify predictive relationships with seagrass 
carbon stocks.  

3.2 Assembling, publishing, and analysing the EURO-CARBON Database 
In the EURO-CARBON database v1 (Graversen et al., 2025, Lønborg et al. 2025), a total of 
61,306 data entries for organic carbon content were included, with the following distribution: 
76% from bare sediments, 18% from salt marshes, 7% from seagrass habitats, and 0.03% from 
macroalgal habitats. To compile this database, the data search was restricted to coastal and 
deep-sea settings within the main European Regional Seas, including the Baltic Sea, the Black 
Sea, the North-east Atlantic Ocean, and the Mediterranean Sea. The sediment data were 
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obtained from three types of sources: directly from data contributors, from online databases, 
and from scientific papers and reports. Data collection began with a public call inviting 
researchers to contribute both published and unpublished data via a standardized submission 
template. Additional data were sourced from existing marine sediment databases and 
through a comprehensive literature search on Google Scholar, which initially yielded 17,700 
entries and was refined to 1,112 potentially relevant studies. Further records were identified 
through reference lists, existing reviews, and academic theses. All samples underwent 
consistent post-collection processing. 

 
Figure 3. Overview of the spatial and species distribution of seagrass sediment organic carbon 
samples from the EURO-CARBON v1 database. “n=” refers to the number of samples of that 
type in the dataset.  
 
The EURO-CARBON v1 database contains 4,233 sediment carbon datapoints from seagrass 
meadows collected between 1997-2023 in the European region. Samples were not evenly 
distributed across the European coastal region, with certain areas having much higher data 
availability (e.g., coastal areas in Sweden and Denmark) and other areas having very limited 
or no data (e.g., coastal areas in France and Italy). At the regional level, the highest number 
of samples came from the Mediterranean (n=2308), followed by the North European Atlantic 
(n=1348), South European Atlantic (n=317), Baltic Sea (n=171), and the Black Sea (n=89). 
Species information was available for two thirds of the samples (Figure 3). These include data 
from single-species meadows of Zostera marina, Posidonia oceanica, Zostera noltei, 
Cymodocea nodosa, and Halophila stipulacea (listed in order of sample frequency). A minor 
portion of the data (2%) came from mixed meadows of Z. marina and Z. noltei, and Z. marina 
and C. nodosa. The remaining third of samples did not have species information provided.  
 
For all samples, data is provided on the % organic carbon content (dry weight), the sample 
start and end depth (i.e., compacted value), sample latitude and longitude, the data 
originator, sample collection details, and voluntary metadata. Organic carbon content (% dry 
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weight) was available for all samples and ranged from 0.01-23.27%, with a mean of 2.36% and 
a median of 1.11% (Figure 4A). Data on carbon density (gC cm-3) was available for 92% of 
samples and ranged from 0-0.31, with a mean of 0.014 and a median of 0.009 gC cm-3 (Figure 
4B). Carbon density is the mass of organic carbon per unit volume of soil, and is determined 
by the product of the % organic carbon in the soil and the dry bulk density (DBD) of the soil. 
The data distribution for dry bulk density is shown in Figure 4C.  Approximately 33% of 
samples did not have decompacted data provided and were corrected for compaction using 
a linear correction estimated from the 66% of samples with decompacted data available. 
Samples generally came from fine core slices (mean = 4.16 cm, median = 2.60 cm thickness) 
and sample decompacted mean depths range from 0.27-496.50 cm, with a mean of 29.83 cm, 
and a median of 16.75 cm (Figure 4D). Some of these very deep core samples likely come from 
P. oceanica meadows which can form “mattes” of high organic carbon content which can be 
2.7 m or deeper (Fourqurean et al., 2012). These deep samples are rare and approximately 
95% of samples are from shallower than 100 cm.   
 

 
Figure 4. Data distribution of % organic carbon (A), carbon density (B), dry bulk density (C), 
and sediment mean depth (D) for the EURO-CARBON seagrass datapoints.  

3.3 Environmental data matching and assembly 

To support modeling of seagrass carbon stocks, we identified the following satellite and 
oceanographic data products that serve as proxies for key environmental drivers identified in 
the literature review.  
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Primary productivity: Higher photosynthetic rates and net primary productivity increase 
organic input to sediments, boosting long-term carbon storage. Proxy variables: RRS443, 
Chla, surface total phytoplankton concentration, total primary production of phytoplankton 
 
Hydrodynamic energy: Water movement influences sediment deposition and erosion. Low-
energy environments generally favor carbon retention, while high-energy areas may reduce 
burial efficiency through resuspension. Proxy variables: Eastward and northward seawater 
velocity, VHM0 (sea surface wave significant height), specific kinetic energy of seawater at 
the surface (eke), daily maximum, mean, and standard deviation of the significant wave 
height, daily number of significant wave height measurements 
 
Water quality: Nutrient concentrations, turbidity, and dissolved oxygen levels impact 
seagrass growth and sediment chemistry, affecting both carbon input and stability. Proxy 
variables: KD490, RRS620, PBS443, CDOM, subsurface dissolved oxygen, nutrients (near-
surface iron, nitrate, and phosphate concentrations) 
 
Climate, geomorphology, and landscape context: Temperature, salinity, sea level changes, 
geomorphological features (e.g., coastal slope) and landscape context (e.g., proximity to 
estuaries, oyster reefs, wetlands, rivers) shape seagrass distribution, physical processes 
governing carbon storage, and nutrient cycling. Proxy variables: Salinity, bottom 
temperature, seafloor depth, foundation sea surface temperature, BBP443, CDOM, near-
surface pH, surface pCO2, surface total alkalinity, and surface downward flux of total CO2 
(fugacity) 

From NASA’s Sentinel-3 satellite, we selected six 4 km-resolution products. These included 
indicators of water quality (e.g., KD490 and RRS620 for suspended sediments), productivity 
(RRS443 and chlorophyll-a), and organic content (PBS443 and CDOM). These variables may 
influence carbon storage through effects on light availability, sedimentation, and organic 
matter input. We used composite data from the full mission period (2016–2025), assuming 
that long-term conditions shape sediment carbon accumulation. 

From the Copernicus Marine Data Store, we selected seven products covering physical, 
biogeochemical, and carbon-related parameters (Table 1). These included bottom 
temperature, salinity, wave height, ocean currents, phytoplankton productivity, nutrient 
concentrations, and surface CO₂ fluxes. Copernicus data products differed in terms of their 
spatial resolution (ranging from 0.083 - 2 degrees) and the time period the data product was 
available for (Table 1). In all cases, we downloaded the full data product and calculated the 
mean value, and also in certain cases an extreme representative value (e.g. 5th, 90th, 95th 
percentiles).  

Table 1. Overview of the Copernicus data products downloaded and used in the modelling 
analysis. The column “variable” indicates which composite value was used (e.g., mean, p90), 
and the “depth” column indicates which depth the composite value was calculated for.  
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All environmental data were spatially matched to seagrass sediment carbon measurements 
using latitude and longitude. Due to the coarse resolution of some datasets, exact matches 
were not always possible—particularly in complex coastal zones. In such cases, we used the 
nearest available oceanographic value. For our dataset, 25–33% of sites required nearest-
neighbour matching due to land masking in satellite grids (e.g., Figure 5).  

 

Figure 5. Satellite-derived composite particulate backscatter at 443 nm (PBS443) from 
Sentinel-3, overlaid with EURO-CARBON seagrass carbon measurement sites, color-filled with 
PBS443 values. Panel A provides a regional overview, while panels B and C zoom into a 
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topographically complex area where some sample sites lacked direct satellite data matches 
(black-dotted circles in B). These were assigned values from the nearest grid cell (shown in C). 

The final dataset included 42 continuous environmental variables matched to the EURO-
CARBON seagrass sediment dataset. These variables were used in modelling efforts (Activity 
5) to explore relationships between environmental conditions and organic carbon storage in 
seagrass sediments. 

3.4 Stakeholder feedback on modelling approach and output 
In collaboration with WP6, we engaged with the Marco-Bolo Community of Practice (CoP) to 
maintain dialogue with potential users of our research. While data availability and model 
performance are critical for assessing remote sensing’s role in blue carbon mapping, 
understanding user needs and limitations is equally important. Our participation in co-
creation workshops aimed to explore how EU policymakers view opportunities to use 
seagrass blue carbon data in national inventories and climate plans and understand their 
requirements for data accuracy and MRV (monitoring, reporting, verification). Additionally, 
we wanted to identify who the more granular users would be of an analytical product that we 
could produce through Task 5.3 that could enable mapping and estimation of blue carbon 
stores in seagrass beds in Europe using global oceanographic data products.  

We participated in two co-creation workshops. The first was more general to the MARCO-
BOLO project as a whole but included a short presentation on our task and had EU 
Commission representatives from DG ENV, DG MARE, DG RTD, JRC and representatives from 
HELCOM and OSPAR (Benedetti et al., 2024). The second workshop was focused exclusively 
on co-creation of T5.3 and included representatives from DG ENV, DG MARE, DG RTD, CINEA, 
EMODNet, the GOOD BioEco Panel, and HEU sister projects OBAMA-NEXT, BioEcoOcean, and 
C-BLUES (Ashforth et al., 2025). Although we did not receive definitive answers to all our 
questions, the discussions provided valuable insights into stakeholder perspectives on needs 
and opportunities for seagrass mapping. Raising these questions also helped build 
relationships with stakeholders and initiate conversations. Notably, we learned that no EU 
countries currently include seagrass in their climate plans (despite their prevalence along 
many coastlines) highlighting gaps in perceived relevance and data availability. 

A key benefit of the workshops was the opportunity to gather targeted feedback on our 
modelling approach and virtual research environment product. We discussed the parameters 
of the EURO-CARBON dataset to understand which response variable and depth horizon 
would be most relevant to stakeholders. Stakeholders indicated that carbon density was the 
most relevant response variable for estimating carbon stocks, and that depths beyond 100 
cm were less useful for policy reporting. Based on this input, we limited our modelling dataset 
to samples with carbon density data and sediment depths shallower than 100 cm. Slides from 
the workshop that showed these questions are provided in Figure 6 and 7. 

By sharing our preliminary modeling approach and results and how they would be 
incorporated into a LifeWatch ERIC Virtual Research Environment Interface, we were able to 
gauge community interest in using this product. Stakeholders expressed a preference for a 
simple tool that could estimate carbon stocks in the top 30 and 100 cm of soil based on 
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seagrass bed coordinates. While researchers were identified as the primary users, there was 
also interest in a broader mapped product from non-academic stakeholders in the EU policy 
community. Early use by researchers is expected to focus on validating the tool with new 
sediment carbon data not included in the EURO-CARBON training dataset. This stakeholder 
feedback will guide the development of the virtual research environment for Task 5.3 as part 
of WP5.  

 
Figure 6. Slide from the co-creation workshop where stakeholders provided feedback on the 
most suitable response variable for their reporting needs. 
 

 
Figure 7. Slide from the co-creation workshop where stakeholders provided feedback on the 
most relevant depth horizon for their reporting needs.  
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In addition to the Marco-Bolo CoP workshops, we also participated in the “Wetlands and Blue 
Carbon” workshop (February 2025), organized by Trinomics, Ricardo, and Blue Carbon Lab 
under a CINEA study. In the breakout group on “Blueprint to Blue Carbon: Building an EU-
wide Monitoring Roadmap,” we shared information on Task 5.3 and gained further insight 
into policy needs. From this meeting, we learned that there was ongoing debate over whether 
allochthonous carbon should be included in seagrass carbon accounting. This has high 
implications for carbon accounting in seagrass beds, since a non-minor portion of the carbon 
can come from allochthonous sources. We also learned that from 2026, EU Member States 
will be required to include wetlands in their LULUCF emissions reporting (currently this is 
optional). However, only areas considered “managed” fall under this reporting requirement; 
it remains unclear whether seagrass beds will consistently meet this criterion. Participation in 
this workshop helped us better understand the evolving EU policy landscape specific to blue 
carbon reporting and build cross-EU grant connections with other blue carbon researchers. 
Further details on the workshop are available in the workshop report (Whiteoak et al. 2025). 

3.5 Seagrass blue carbon model development and testing 

The goal of Task 5.3 was to answer two key questions: 

● Q1: Which remotely sensed environmental variables are most strongly linked to 
carbon storage in seagrass beds? 

● Q2: How much variation in carbon stocks can be explained using these variables 
alongside other mapped environmental data? 

To address these, we used a multi-model approach combining machine learning (Gaussian 
Process Regression, Decision Tree, Neural Network) and statistical methods (Random Forest, 
Generalised Additive Model). This allowed us to compare performance across techniques and 
identify robust patterns. 

All models used a consistent structure: 

Carbon density was modelled as a function of sediment depth, 42 environmental predictors 
(see Section 3.3), seagrass species, region, and core ID. Sediment mean depth was included 
in the model because carbon concentration is generally more concentrated near the sediment 
surface. Core ID was included as a random effect to account for the hierarchical nature of the 
data (i.e., even though the dataset is composed of 3680 observations, these only come from 
382 unique sediment cores). Core ID was included as a random effect in all models except 
tree-based ones, which don’t support random effects. Seagrass species and region were fixed 
categorical variables with eight and five categories, respectively (see Section 3.2). Although 
carbon density was selected as the main response variable based on stakeholder feedback, 
we also tested carbon percent, which had slightly more data (n = 4002 with data from 461 
unique cores). Since the distribution of carbon density showed a strong right skew (Figure 4B), 
we applied appropriate transformations (e.g., log link with Gamma distribution for the 
generalized additive model). 
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To improve usability and reduce computational demands, we also tested simplified models 
using only the most influential variables. We evaluated model performance using cross-
validation, leaving out subsets of data to test predictive accuracy and reduce overfitting. 

3.5.1. Effects of selected response variable 
For all tested models, organic carbon density had higher explanatory power than organic 
carbon percent. For example, in the Random Forest analysis, the model was able to explain 
87% of the variation in carbon density, compared to 74% in organic carbon percent (Figure 8). 
This is encouraging, as carbon density was the preferred response variable for stakeholders 
and indicates that model performance is not worsened by using the slightly smaller dataset. 
 

 
Figure 8. Comparison of variable importance for the full random forest models implemented 
in R, showing differences in variables importance and higher model explanatory power when 
carbon density (A) versus percent organic carbon (B) is used as the response variable. *Note 
that in B) a higher sample dataset is available for training the model, however the same 
reduced model performance was observed when using the smaller dataset. Thus we attribute 
this to the choice of response variable rather than data availability.  
 
We found some differences in which environmental variables were most important 
depending on the response variable (Figure 8). Variables related to carbonate chemistry (e.g. 
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spCO₂, fgCO₂) and water clarity (KD490) were more relevant for explaining differences in 
organic carbon percent, while seagrass species had a higher importance in explaining 
differences in carbon density. This likely reflects the influence of dry bulk density, which 
affects carbon density but not carbon percent. These findings highlight the importance of 
measuring dry bulk density in seagrass carbon assessments, as it improves the usefulness of 
data for carbon accounting and policy applications. 
 
3.5.2. Satellite remote sensing variables and seagrass carbon stocks 
Across all models, two satellite-derived variables—remote sensing reflectance at 443 nm 
(RRS443) and diffuse attenuation coefficient (KD490)—consistently emerged as strong 
predictors of carbon density in seagrass beds. In contrast, chlorophyll concentration (Chla) 
and absorption due to gelbstoff and detritus (CDOM) were poor predictors, while RRS620 and 
PBS443 showed inconsistent results. 

To assess the predictive power of remote sensing variables alone, we tested two generalized 
additive models using six satellite variables, sediment depth, core ID, and either seagrass 
species or region: 

● Model 1: Included seagrass species 
● Model 2: Included region 

In both models, KD490 and RRS443 were highly significant (p < 0.001). Carbon density 
decreased with increasing RRS443, and higher carbon density was observed when values for 
KD490 exceeded 2, though patterns were less consistent at lower values. In Model 1, Chla 
showed weak significance (p = 0.08), while in Model 2, RRS620 was significant (p = 0.002). 
Sediment depth and core ID were also consistently important. 

Model performance was similar whether using species or region, suggesting that users 
without species data can still apply the regional model effectively. However, since carbon 
density varies across species—e.g., higher in P. oceanica, lower in Z. marina, and lowest in 
mixed beds—we recommend using species data when available. 

3.5.3. Can global oceanographic data products predict seagrass carbon 
stocks? 
In short, our results show that yes, global oceanographic data products combined with 
satellite variables can effectively predict carbon density in seagrass beds. All tested models 
showed strong performance (R² > 0.8), with machine learning models outperforming 
traditional statistical approaches. 

Since the results of the random forest analysis were already presented in 3.5.1, here we 
present the results of the machine learning models. The following machine learning models 
were evaluated: kernel machines: Gaussian Process Regression and Support Vector Machines 
(SVM) with different kernel functions (linear, exponential, Matern, isotropic and anisotropic 
squared exponential), decision trees (fine, medium, course, boosted and bagged) and Neural 
Networks (NN) (with different number of layers and neurons).  
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The three top-performing machine learning models were the Gaussian Process Regression 
(GPR), Decision Tree, and Neural Network. These models were first tested using all available 
predictors (42 environmental variables, sediment depth, species, region, and core ID), using 
re-substitution for validation. We then identified the 10 most influential variables using 
Shapley values and tested reduced models. The reduced GPR model improved performance, 
the decision tree remained stable, and the neural network declined—consistent with its need 
for more input data.  

As a result, we prioritized the GPR and decision tree models. Because decision trees don’t 
support random effects, we excluded core ID from that model to ensure it could be used for 
future predictions. Both reduced models were validated using 90% training and 10% testing 
data with 5-fold cross-validation. Performance was slightly reduced but remained high (Table 
2). These results suggest that simplified models using global data can reliably estimate 
seagrass carbon stocks.  

Table 2. Model performance metrics (root mean squared error (RMSE) and R2) for the top 
candidate machine-learning models, showing model performance with all predictor variables 
included (top), performance of a reduced model with the top 10 influential predictors 
included (middle), and then the reduced model evaluated using an independent test dataset 
(bottom).  
 
Full-model (all predictors included) with resubstitution for validation 
Model Type RMSE R2 

Decision Tree 0.00818 0.87365 

Gaussian Process Regression 0.00465 0.95923 

Neural Network 0.00573 0.93816 
   

Reduced model (top 10 predictors included) with resubstitution for validation 
Model Type RMSE R2 

Decision Tree 0.00842 0.87133 

Gaussian Process Regression 0.00919 0.84462 
   

Reduced model (top 10 predictors included) with 10% independent test data for 
validation 
Model Type RMSE R2 

Decision Tree 0.00793 0.81989 

Gaussian Process Regression 0.00707 0.88076 
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3.5.4. Key environmental predictors for seagrass carbon stocks 

To balance model performance with ease of use, we aimed to identify a reduced set of high-
impact environmental variables for predicting seagrass carbon density. We compared the top 
predictors across four candidate models to find those consistently ranked as most important 
(Figure 9). The following predictors commonly emerge as important:  

● Sea surface wave significant height (95th percentile) 
● Phosphate concentration 
● Mean pH 
● Remote sensing reflectance at 443 nm (RRS443) 
● Diffuse attenuation coefficient (KD490) 
● Bottom temperature (95th percentile) 
● Eastward and northward seawater velocity (vo, uo) 

In addition, seagrass species and sediment mean depth were consistently identified as 
significant predictors and should be included. While the model can still function without 
species data (e.g., using the “Unspecified” species category or including “Region” as a factor 
variable), species-specific data improves accuracy. Region alone was not a strong predictor 
when species data was available. 

 
Figure 9. Top 10 most influential predictors identified by the four tested candidate models. 
Variables are ordered and color-coded based on which appear most frequently across 
multiple models (dark blue text, upper: variables that appear across all 4 models; dark green 
text, middle: variables that appear across 3 models; dark gray text, middle: variables that 
appear across 2 models; white text, bottom: variables that were only selected by 1 model).  

Based on these findings, we recommend a simplified model using just 9 environmental 
predictors plus sediment depth and species: 

Recommended model: 
Carbon density (gC cm⁻³) ~ KD490 + RRS443 + VHM0_p95 + Phosphate_mean + pH_mean + 
Bottom_T_p95 + Vo_p90 + Uo_mean + fgCO₂_p95 + Sediment depth + Seagrass species 

This reduces the original 42 predictors to a manageable subset, while maintaining high model 
performance for practical use in policy and management tools. 
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4. Discussion 

4.1 How can remote sensing contribute to European needs for blue carbon 
monitoring? 
Remote sensing can make a significant contribution to European needs for blue carbon 
monitoring by providing scalable, cost-effective tools to map seagrass extent, estimate 
carbon storage, and supply environmental context across data-poor regions. While remote 
sensing cannot replace field observations, it can enable consistent EU-wide assessments, 
highlight priority areas for ground validation, and support the development of user-friendly 
products that make mapping seagrass carbon stocks more accessible to policymakers, 
managers, and researchers.  

While our study suggests that remote sensing can contribute to mapping region-wide blue 
carbon stocks, it is unlikely that this approach would be appropriate for restoration efforts or 
mapping carbon accumulation rates. The approach we used is crude in that it assumes that 
carbon stocks in seagrass beds are due to long-term environmental processes and conditions. 
While this assumption appears robust for modelling at a whole-region level, these 
assumptions are likely not valid on the finer scale or when considering short time scales. Fine-
scale variation and short-term changes require targeted field sampling.  

Many organizations are working to help countries include blue carbon ecosystems in climate 
inventories. These include the Blue Carbon Initiative, International Partnership for Blue 
Carbon, Blue Carbon Accelerator Fund, Blue Natural Capital Financing Facility, and the Global 
Ocean Decade Programme for Blue Carbon. Resources such as the Blue Carbon Initiative’s 
guide for Nationally Determined Contributions (Hamilton et al., 2023) and Northrop et al. 
(2020)’s overview of public data sources support this effort. As of 2022, the International 
Partnership for Blue Carbon identified about 40 actors working on blue carbon at the global 
and regional level. Despite growing support, challenges remain that prevent countries from 
including blue carbon ecosystems, and especially seagrass beds, in their climate pledges and 
national climate inventories (e.g., insufficient data and perceived relevance).  

There is increasing interest in both market-based (e.g., carbon credits, payments for 
ecosystem services) and non-market approaches to valuing blue carbon. The Verra Standard 
is the most widely used for blue carbon credits, though most projects focus on mangroves 
(Friess et al., 2022). However, progress for seagrasses is emerging. France recently approved 
a methodology to generate blue carbon credits from protecting Posidonia meadows under its 
domestic offsetting Bas-Carbone label (Comte et al., 2024). The Verra Standard has also 
released a new methodology for quantifying greenhouse gas emissions and removals 
resulting from project activities for restoring wetlands, including seagrass beds (VM0033 v2.0; 
Emmer et al., 2023). 
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4.2 Study limitations and next steps 

Now that we have identified key environmental predictors from satellite remote-sensing and 
oceanographic data products that can estimate carbon density in seagrass beds, the next step 
is to integrate this model into a Virtual Research Environment. This will be developed with 
LifeWatch ERIC as part of WP5 and the product shared with participants who attended the 
co-production workshop. This tool will allow users to estimate carbon stocks by simply 
entering the location and, if known, the seagrass species, of a seagrass bed of interest. The 
tool will automatically retrieve relevant environmental predictor variables and provide 
carbon stock estimates for the top 30 cm and 100 cm of sediment. In the future, it could be 
scaled to map carbon stocks across all European seagrass regions, similar to existing P. 
oceanica distribution maps in EMODNet (Figure 10). 

 

Figure 10. Seagrass essential ocean variable (EOV) data, available via EMODNet, provides 
comprehensive point and polygon records of seagrass beds across Europe. Panel A displays 
132,233 seagrass observations (black points) and EURO-CARBON sediment sampling sites 
(pink circles). Seagrass location data from the EOV (A) or predicted seagrass distribution maps 
(B) could be used to create a map of carbon stocks through the virtual research environment.  

Scientific research is a process of continuous improvement and thus we highlight these areas 
for future work. First, we emphasize that despite the high performance seen with the tested 
models, further testing is needed as additional in situ data become available. Even though the 
EURO-CARBON database presents the most comprehensive dataset of seagrass sediment 
carbon data for Europe, these 4,000+ samples only come from 461 unique cores, with large 
areas (e.g., France and Italy) still lacking data. More in situ sampling is needed to improve 
model accuracy and support national carbon stock assessments. 

An additional area of improvement would be the incorporation of a data product that 
contains information on sediment type in the model, since mud content can be a predictor of 
seagrass soil organic carbon content (Serrano et al., 2016). Although we couldn’t access 
region-wide sediment maps, future work could explore sources in EMODNet. Similarly, 
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proximity to features like rivers, river deltas, oyster reefs, estuaries, and wetlands can affect 
allochthonous carbon deposition in seagrass beds but was not directly included in our model 
due to lack of spatial metrics. These could be added in the future using mapped datasets. 

Our analysis focused on sediment depths up to 100 cm, based on stakeholder input. However, 
some seagrass beds, especially P. oceanica, store carbon much deeper (up to 2.7 m) 
(Fourqurean et al., 2012). Thus, predicted values from our model likely underestimate total 
carbon stocks.  

4.3 Beyond carbon benefits in blue carbon ecosystems 
While this study focused on carbon storage, seagrass beds provide many other valuable 
ecosystem services—that are equally or more important. Remote sensing can also contribute 
to monitoring these ecosystem services. 

For example, seagrasses can improve water quality and support fisheries by functioning as 
nursery habitats. Sentinel-1 C-band synthetic aperture radar (SAR) satellite data can track 
marine vessel activity near seagrass beds, revealing areas of high recreational or fishing use 
(Chowdhury et al., 2024). Sentinel-2 and Sentinel-3 satellite data can be used to monitor 
turbidity, chlorophyll-a, and algal blooms in proximity to seagrass beds, thus providing 
information on water quality.  

Coastal protection is another key benefit. Seagrasses reduce wave energy and storm impacts, 
helping prevent shoreline erosion. Satellite-borne SAR can offer fine-scale monitoring of 
coastal changes, sea level rise, and intertidal zones (e.g., Haarpaintner and Davids 2021; Di 
Paola et al., 2018; Meng et al., 2024). Unlike optical sensors, SAR can operate day and night 
and “see” through cloud cover, making it especially useful in coastal areas where clouds are 
common (Borfecchia et al., 2019). Although SAR cannot detect underwater vegetation, it can 
improve mapping and biomass estimates for intertidal seagrass beds (Simpson et al., 2022). 
Combining SAR with high-resolution optical imagery can enhance assessments of seagrass 
extent and erosion regulation and other ecosystem services—similar to approaches used for 
tropical forests (Reiche et al., 2016). 

4.4 New satellite remote sensing tools for improved seagrass carbon stock 
monitoring and evaluation  
Remote sensing is rapidly evolving, and upcoming satellite missions from NASA and the 
European Space Agency (ESA) will significantly enhance potential for blue carbon monitoring. 
New hyperspectral sensors will offer much finer detail on coastal biological processes by 
capturing a broader range of light wavelengths (Dierrssen et al., 2021). While hyperspectral 
data was previously available for certain regions, NASA and the ESA’s new missions will make 
it available on a global level.  

NASA’s three new hyperspectral aquatic missions are the Plankton, Aerosol, Cloud, ocean 
Ecosystem (PACE) satellite (Werdell et al. 2019) which was launched in 2024, the 
Geostationary Littoral Imaging Radiometer (GLIMR) satellite which is planned to launch in 
2026, and the Surface Biology and Geology (SBG) satellite (Cawse-Nicholson et al., 2021) 
which is planned to launch in 2028 (Dierssen et al., 2023). The ESA will launch the Copernicus 
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Hyperspectral Imaging Mission (CHIME) which is planned to launch in 2028, and will collect 
high-resolution hyperspectral observations of coastal waters as well as land.  

These new satellite missions will enhance blue carbon monitoring in marine habitats by 
improving carbon monitoring, reporting, and verification. They will also provide detailed data 
on floating vegetation composition, benthic composition, phytoplankton community 
composition, and wetland composition. Hyperspectral sensors may further advance 
understanding of carbon storage in seagrass beds by better characterizing dissolved organic 
carbon from rivers and wetlands (Tzortziou et al., 2008). NASA’s SBG mission is especially 
promising, offering global, high-resolution (30 m) data that can capture seagrass patchiness, 
distinguish species, and track seasonal and long-term changes (due to the 16-day revisit 
time)—including those driven by storms, sea-level rise, climate change, and restoration. ESA’s 
CHIME mission will offer similar capabilities on a similar timeline. In contrast, the NASA GLIMR 
mission will only collect data from several specific regions, and none of these are in Europe, 
reducing the usefulness of this mission for European blue carbon monitoring.  

Additionally, ESA’s upcoming Copernicus CO₂M satellite mission will support spatial mapping 
of blue carbon benefits by enabling accurate measurements of CO₂, CH₄, and NO₂. The mission 
includes three satellites, with the first launching in late 2025. These data will help fill 
knowledge gaps on greenhouse gas fluxes in seagrass beds and other blue carbon ecosystems. 

In conclusion, remote sensing and global oceanographic data can already contribute to 
evaluating blue carbon services in seagrass beds, but upcoming satellite missions will greatly 
expand these capabilities. However, with many tools available, it can be difficult for managers 
to know where to start. The Remote Sensing Toolkit helps bridge this gap by guiding users on 
how different satellites and aircraft can support mapping and monitoring needs (Figure 11). 
While some high-resolution products require payment, many datasets are freely accessible 
through the Copernicus Data Space Ecosystem for the European region 
(https://dataspace.copernicus.eu/). 

 



 

28 
  

Figure 11. Interface for the marine remote sensing toolkit, showing different remote sensing 
technologies for mapping seagrass under different depth and turbidity conditions. The toolkit 
can be accessed: https://sees-rsrc.science.uq.edu.au/rstoolkit/. 
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