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Executive Summary  
The main goal of this report is to assess biodiversity trends and their drivers in marine and coastal 

European ecosystems. To this end, we analysed community level biodiversity trends (section 2.1) and 

species level habitat use (section 2.2) during the last decades using data from open sources. 

Biodiversity trends are paired with environmental parameters and projected into the future, using 

Habitat Suitability Models (section 2.2) and Random Forest Regressions (section 2.3). 

The first study analysed European time series for six biotic groups (i.e. birds, fish, invertebrates, 

macroalgae, phytoplankton and zooplankton) to estimate temporal trends (1956-2022) in richness, 

diversity, and abundance across regions. The data was extracted from open-access databases 

(BioTIME, EMODnet, REPHY, FishGlob, Continuous Plankton Recorder Survey). Most communities 

showed no significant change, suggesting no further widespread biodiversity loss during the 

observation period. Positive trends were found for birds and invertebrates in the Baltic, and negative 

ones for fish in the Atlantic. However, uneven data coverage limits this generalization, highlighting 

the lack of sufficient rigorous monitoring of biodiversity and of accessibility to existing data. 

The second study focused on predicting habitat suitability for coastal and marine species protected 

under Habitat and Bird Directives, under current and future Shared Socioeconomic Pathways (SSP) 

climate scenarios. Projections are made for four marine mammal species (harbour porpoise, harbour 

seal, common and bottlenose dolphins) in OSPAR regions II–IV, using EurOBIS data (2000–2019) and 

environmental predictors. Results revealed clear spatial and seasonal patterns in projected suitable 

habitats: southward shift for porpoises in winter, seals stay coastal, and dolphins concentrate in the 

Iberian region. Future projections suggest an overall reduction in suitable habitats for all four species. 

While limited by sampling biases and data inconsistencies, the study demonstrates the value of open-

access biodiversity data for large-scale ecological modelling. 

The third study examined climate change impacts on coastal ecosystems, focusing on the Gulf of 

Naples (LTER Mare Chiara site). Combining long-term data, reanalysis, and machine learning, the 

study found salinity to be a key driver of chlorophyll (phytoplankton) variability, linking land-based 

freshwater inputs and ocean dynamics. Using Representative Concentration Pathways to 2070 

(RCP4.5, RCP8.5), the model predicts increasing salinity and declining chlorophyll, largely driven by 

reduced rainfall and runoff. The findings stress the importance of long-term monitoring and indicate 

that land-driven changes may affect coastal productivity more than ocean warming alone. 

This report highlights the usefulness of publicly available data but also its limitations. On the one 

hand, existing open data allows us to assess long-term biodiversity trends and to project those 

trends into the future. On the other hand, the limited data availability reduces the representativity 

of the results and decreases the precision of future projections. As biodiversity open-source data 

increases in quantity and quality, the potential of future analyses will grow with it. 

With this Report, we aim to provide a broad perspective of the past, present and future of marine and 

coastal biodiversity across Europe.  



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling                                                      

  

4 
  

Contents 

Document Information ............................................................................................. 2 

Executive Summary ................................................................................................. 3 

1. Introduction .......................................................................................................... 5 

2. Detection and analysis of biodiversity trends 

2.1 Time series analysis 

2.1.1 Objective .................................................................................................................... 6 

2.1.2 Background................................................................................................................ 6 

2.1.3 Methodology .............................................................................................................. 7 

2.1.4 Results and discussion .............................................................................................. 9 

2.2 Habitat suitability modelling 

2.2.1 Objective .................................................................................................................. 13 

2.2.2 Background.............................................................................................................. 13 

2.2.3 Methodology ............................................................................................................ 13 

2.2.4 Results and discussion 

2.2.4.1 Species occurrences across the study area ..................................................... 15 

2.2.4.2 Model evaluation .............................................................................................. 15 

2.2.4.3 Monthly habitat suitability predictions ............................................................... 15 

2.2.4.4 Decadal habitat suitability predictions for current and future climate scenarios . 19 

2.3 Determining causal relationships 

2.3.1 Objective .................................................................................................................. 25 

2.3.2 Background.............................................................................................................. 25 

2.3.3 Methodology ............................................................................................................ 26 

2.3.4 Results and discussion 

2.3.4.1 Chlorophyll-a predictors .................................................................................... 28 

2.3.4.2 Linkage between salinity and physical factors .................................................. 29 

2.3.4.3 Future projections ............................................................................................. 30 

2.3.4.4 Discussion ........................................................................................................ 32 

3. Conclusion .......................................................................................................... 34 

Bibliography ........................................................................................................... 35 

Appendix A ............................................................................................................. 40 

Appendix B ...................................................................................................................... 48 

  

https://docs.google.com/document/d/11Etn9Q1szJ-kMVrCzDFIl5npS-xZFHiy/edit?pli=1#heading=h.2s8eyo1


D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling                                                      

  

5 
  

1. Introduction 
 

Assessing the status of ecosystems is of high relevance for conservation, ecology and ecosystem 

management. Status assessments include a broad variety of approaches including community metrics 

and indicator species. As the specific metrics and surveying methodologies have been standardised 

during the last decades, the opportunity to study long term trends, their causes and their future 

projections arises. 

In Europe, a broad variety of projects, research infrastructures and legislations, including the Marine 

Strategy Framework Directive (MSFD) the Integrated European Long-Term Ecosystem, critical zone 

and socio-ecological Research Infrastructure (eLTER RI), offer sources of data since many years. 

Complementarily, scientific knowledge on the cause-effect relationships between environmental 

predictors and biodiversity has grown during the last decades. At the same time, the robustness of 

statistical models capable of predicting those relationships grew, being climate models a common 

example. In sum, there are big datasets of biodiversity descriptors and of ecological parameters for 

long time periods now available, as well as an improved understanding of their cause-effect 

relationship, and models able to generate robust future projections of those parameters. 

Improvements in time series analyses combined with the increasing amount of biodiversity time series 

data provide new opportunities for research, conservation and biodiversity assessment. In recent 

years, the amount of scientific papers addressing biodiversity change from local to global scale has 

significantly increased. This knowledge gain now allows for calculating trajectories of biodiversity 

change and assessing the status of ecosystems at a precise moment in time. Combined with 

environmental driver analyses including pollution, climate change and biological invasions, drivers of 

biodiversity change could be identified and the respective policies informed. Such analyses could 

provide evidence that past conservation efforts paid off, as shown, for example, for European 

freshwater biodiversity which significantly improved over the past decades due to the large-scale 

implementation of wastewater treatment plants (Haase et al. 2023; Sinclair et al. 2024). 

The goal of this report is to assess biodiversity trends and their drivers in marine and coastal European 

ecosystems. To this end, we analysed community level (section 2.1) and species level (section 2.2) 

biodiversity trends of the last decades using data from open sources. Biodiversity trends are paired 

with environmental parameters and projected into the future, using Habitat Suitability Models 

(section 2.2) and Random Forest Regressions (section 2.3).  
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2. Detection and analysis of biodiversity trends 

2.1 Time series analysis  

2.1.1 Objective 

Based on long-term ecological time series data from publicly accessible databases (e.g. BioTime; 

EMODnet), we will quantify trends of coastal and marine biodiversity (abundance, species richness 

and taxonomic diversity) of six biotic groups (birds, fish, invertebrates, macroalgae, phytoplankton 

and zooplankton) at European scale. 

2.1.2 Background 

Biodiversity loss is one of the main global-scale challenges our planet is facing. Losses have been 

described in marine, freshwater and terrestrial ecosystems, in every ocean and continent (Butchart et 

al. 2010). In European marine and coastal waters, biodiversity loss is caused by human activities: 

overfishing reduced fish and invertebrate stocks and harmed vulnerable species (Piroddi et al. 2020); 

trawling destroyed seabed integrity (Eigaard et al. 2017); eutrophication caused harmful algal blooms 

(Tsikoti & Genitsaris 2021); pollution increased heavy metal levels, intoxicating marine organisms 

(Tornero & Hanke 2016); oil spills destroyed coastal habitats (Castège et al. 2014); climate change 

shifted species distribution towards colder waters and enabled biological invasions of species from 

warmer waters (Chust et al. 2024). 

As the causes of biodiversity loss in European marine ecosystems were identified, legislation and 

policies to counteract the losses were implemented. For example, the Common Fisheries Policy 

introduces fishing quotas (Froese et al. 2018); deep ocean trawling is now forbidden in some deep-

sea ecosystems (Regulation 2016/2336); the Urban Waste Water Treatment Directive fostered 

significant reductions of nitrogen pollution of coastal and marine ecosystems (Directive 2024/3019), 

while the Descriptor 8 of the MSFD aims to reduce eutrophication of coastal and marine waters 

(Grizzetti et al. 2021); the Erika legislative packages increase safety regulations for oil tankers 

(Regulation 530/2012), resulting in a reduction of oil spills; the European Regulation on Invasive Alien 

Species sets measures to be taken against invasive species (Regulation 1143/2014); and Marine 

Protected Areas, which cover more than 12% of the marine EU waters (EEA 2020), limit some of the 

most prejudicial human activities. Although the results of these policies are sometimes insufficient 

(Aminian-Biquet et al. 2024; Kleitou et al. 2021), some positive effects on biodiversity are already 

apparent at local and regional scale (Jacquemont et al. 2022). In sum, there are two opposing 

processes acting on coastal and marine biodiversity: losses caused by human activities and gains 

caused by conservation efforts. 

To ensure the future of coastal and marine ecosystems, we need to assess long-term trends and the 

current status of coastal and marine biodiversity, including their drivers. By assessing biodiversity 

trends, we can better understand if biodiversity loss is worsening, stagnant or improving, and if 

conservation policies are effective. Finally, we also want to determine if the causes of biodiversity loss 
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and the effectiveness of conservation policies are similar across European regions and for different 

groups of organisms. To that end, here we assess the biodiversity trends at continental scale and at 

regional scale, separately for six biotic groups. 

2.1.3 Methodology 

We created six datasets of time series for European coastal and marine biotic groups: birds, fish, 

invertebrates, macroalgae, phytoplankton and zooplankton. The time series were extracted from 

open access databases: BioTIME (version 1.0) (Dornelas et al. 2018), COPEPOD (O'Brien 2014), the 

European Marine Observation and Data Network (EMODnet) (Beja et al. 2024), REPHY (REPHY 2023), 

FishGlob (Maureaud et al. 2025) and CPR Survey (Vezzulli & Reid 2003); and a previous study analysing 

multidecadal biodiversity trends in European marine, freshwater and terrestrial ecosystems (Pilotto 

et al. 2020). Each of the included time series met the following criteria: (1) had a minimum number of 

eight sampling years (not necessarily consecutive) with one single annual observation (based on a 

single sampling event for every biotic group, except for phytoplankton); (2) included abundance 

estimates, and (3) had consistent sampling site, sampling period (any three consecutive months), 

protocol and taxonomic resolution over the entire observation period (Table 1.1). 

In the case of phytoplankton time series, only years with at least eight sampled months and without 

gaps longer than three months were considered to avoid the effect of seasonality and blooms. The 

abundance values of the monthly samples were used to calculate the yearly geometric mean, which 

was later considered as the yearly abundance estimate. For every biotic group, in the case of months 

with several samples, the first sample was used. 

Table 1.1. Number of time series per biotic group and per data source meeting the criteria 

 Birds Fish Invertebrates Macroalgae Phytoplankton Zooplankton TOTAL 

BioTIME 
1.0 

 3 157 28 2  190 

COPEPOD       0 

Pilotto et 
al. 2020 

2 1 8    1 

EMODnet 291 413 1154 14 116 24 2012 

REPHY     89  89 

FishGlob  5     5 

CPR 
Survey 

    26 26 52 

Total 293 422 1319 42 233 50 2359 
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The final dataset comprises 2,359 time series, including 552,475 observations of 4,718 coastal and 

marine taxa in 2,246 different sites (Fig. 1.1). Among these sites 25 are in the Adriatic Sea, two in the 

Aegean-Levantine Sea, 471 in the Baltic Sea, 54 in the Bay of Biscay and the Iberian Coast, 9 in the 

Black Sea, 127 in the Celtic Seas, 1,515 in the Greater North Sea, 32 in the Western Mediterranean 

Sea and one in the White Sea. The time series span from 1956 to 2022 with a mean total duration of 

18 years and a mean of 15 sampled years (minimum 8, maximum 59 sampled years). 

 

Figure 1.1. Location of each time series (sites) and number of sampled years for each of them, by biotic 

group. 
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Taxa names and taxa identification numbers were harmonized using the World Register of Marine 

Species (WoRMS) (WoRMS Editorial Board 2025). To describe changes in the communities we 

calculated taxonomic richness, Shannon’s diversity and total abundance for each time series and year. 

Total abundance was log10-transformed prior to analysis to reduce skewness. 

We used Generalized Least Squares (GLS) models to evaluate time series-level temporal trends in 

richness, diversity and abundance. For each time series and metric, we fitted a GLS model with year 

as a continuous fixed effect, while accounting for temporal autocorrelation. The percentage of change 

per year was calculated by back-transforming model estimates. 

To detect differences in the trends across geographical regions, the time series were grouped into five 

regions (Atlantic, Arctic, Baltic, Black Sea and Mediterranean). The resulting slopes of the GLS models 

were meta-analysed, including their corresponding sampling variances, the region as moderator and 

the site and data source as random effects to account for site-level variation and differences in 

sampling methodologies. The models were fitted via restricted maximum likelihood. 

2.1.4 Results and discussion 

Most of the time series do not show significant changes over time in any biotic group. Overall, more 

time series show positive trends in each biodiversity metric than negative, but this is not consistent 

across biotic groups. For example, there are twice as many time series with a negative trend than 

positive for fish, while there are almost three times more positive than negative trend series for 

invertebrates (Table 1.2). 

Table 1.2. Number and percentage (in brackets) of time series showing significantly positive or 

negative trends in richness, diversity (Shannon diversity index) and abundance (transformed by the 

common logarithm), by biotic group. The remaining number and percentage of time series 

corresponds to the ones that did not significantly change overtime. 

Biotic group n (time series) Trend Richness Shannon 
Diversity 

Abundance 
(log10) 

Birds 293 Positive 95 (32%) 72 (25%) 65 (22%) 
  Negative 14 (5%) 15 (5%) 37 (13%) 

Fish 422 Positive 15 (4%) 16 (4%) 13 (3%) 
  Negative 40 (9%) 44 (10%) 38 (9%) 

Invertebrates 1319 Positive 252 (19%) 190 (14%) 290 (22%) 
  Negative 95 (7%) 85 (6%) 109 (8%) 

Macroalgae 42 Positive 2 (5%) 5 (12%) 8 (19%) 
  Negative 9 (21%) 4 (10%) 17 (40%) 

Phytoplankton 233 Positive 73 (31%) 17 (7%) 36 (15%) 
  Negative 33 (14%) 17 (7%) 15 (6%) 

Zooplankton 50 Positive 29 (58%) 7 (16%) 2 (4%) 
  Negative 3 (6%) 8 (14%) 15 (30%) 

Total 2359 Positive 466 (20%) 307 (13%) 394 (17%) 
  Negative 194 (8%) 173 (7%) 231 (10%) 
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The frequency distributions of the temporal trends (Fig. 1.2) show that most trends follow a normal 

distribution centred around zero, in particular the diversity and the abundance trends. This is, in 

most time series the biodiversity metrics do not change across time, and if they do, the change is 

relatively small. 

 

Figure 1.2. Frequency distribution of the change in richness, diversity (Shannon diversity index) and 

abundance (transformed by the common logarithm) for each biotic group. The horizontal axis shows 

the percentage of change, from -100 to 100 for richness, -10 to 10 for diversity and -20 to 20 for 

abundance (-100 meaning complete decline, 0 no change and 100 a value twice as high as the initial 

value) during the complete sampled period. 

The regional meta-analyses show several significant trends across biodiversity metrics and biotic 

groups (Table 1.3), most of them positive. The clearest regional trends are the increases in bird 

richness and diversity in the Baltic, the fish abundance decline in the Atlantic, and the increase in 

invertebrate richness, diversity and abundance in the Baltic. Some indicators show different trends for 

the same group in different regions: fish abundance (negative trend in the Atlantic but positive in the 

Mediterranean); and zooplankton abundance (negative trend in the Atlantic and Baltic but positive in 

the Black Sea). 
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Table 1.3. Regions showing a significant trend, by biotic group. Metrics and regions not included do 

not show any significant trend. There were no significant trends for macroalgae. In bold the trends 

with more than 30 time series. n indicates the total number of time series for the biotic group in the 

region. 

 Metric Region n (time series) Trend 

Birds Richness Atlantic 2 Positive 

  Baltic 291 Positive 

 Diversity Baltic 291 Positive 

Fish Abundance Atlantic 395 Negative 

  Mediterranean 27 Positive 

Invertebrates Richness Baltic 166 Positive 

 Diversity Baltic 166 Positive 

  Mediterranean 11 Positive 

 Abundance Baltic 166 Positive 

Phytoplankton Diversity Mediterranean 24 Negative 

 Abundance Mediterranean 24 Positive 

Zooplankton Richness Baltic 14 Positive 

 Diversity Baltic 14 Positive 

  Black Sea 1 Positive 

 Abundance Atlantic 30 Negative 

  Baltic 14 Negative 

  Black Sea 1 Positive 

These results can be summarized as follows: first, there is a high variability in data coverage that limits 

the scope of this analysis, and second, the biodiversity trends mostly show stability in the communities 

although there are some differences across biotic groups and regions. 

The data coverage is highly variable geographically (more than half of the sites are in the Greater North 

Sea) and biologically (invertebrates represent more than half of the time series analysed). This limits 

the reliability of the comparisons between regions or groups and hinders the interpretation of the 

results. 
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Accordingly, the higher number of time series for the North Sea and the Baltic Sea make the observed 

stable trends of biodiversity metrics more reliable compared to the trends for other regions, which 

are less supported by a sufficient number of time series. Moreover, differences in regional biodiversity 

trends are commonly a result of differences among regional drivers (e.g. negative anthropic pressures 

or positive effects of conservation actions). Accordingly, up-scaling our results to continental scale 

may result in wrong conclusions. 

The generally stable biodiversity trends indicate that no widespread loss of biodiversity was detected, 

but there are some differences between groups and regions. As the reliability of the results is heavily 

dependent on the number of time series analysed, we will limit the discussion to biotic groups with 

more data (i.e. invertebrates, fish, phytoplankton and birds). 

On the one hand, for invertebrates and birds there are more time series following positive trends, and 

the significant regional trends (in the Baltic) are also positive. This can indicate that the conservation 

policies adopted in the Baltic are effective (Cano-Barbacil et al. 2025; Andersen et al. 2017; Sköld et 

al. 2025). 

On the other hand, for fish there are more time series following negative trends, and the significant 

regional trends are negative in the Atlantic but positive in the Mediterranean. The fishing pressure is 

still high in the Atlantic (Froese et al. 2018), and its effects could be worse for the most common 

species (as richness and diversity trends are stable). The positive trend in the Mediterranean is likely 

observed because most of the time series analysed in the region (18 out of 27 time series) are from 

an older time period (between 1956 and 1971) when the anthropic pressures were not as intense 

(Fiorentino & Vitale 2021). 

For the phytoplankton the results are mixed, and there is a low number of time series in the only 

region with significant trends (the Mediterranean). Some of the taxonomical groups within the 

phytoplankton community can react positively to eutrophication and water warming (Suikkanen et al. 

2013), while others could be declining, explaining the increases in abundance but loss of diversity. 

Finally, in this section we presented a descriptive analysis of the coastal and marine biodiversity trends 

based on available public time series data. Overall, we did not detect a widespread biodiversity loss in 

European coastal and marine communities. However, we caution overinterpretation of this result as 

our analyses are biased by severe biodiversity time series data gaps regarding both biotic groups and 

regions. Moreover, compared to linear models, non-linear models may provide more nuanced insights 

into biodiversity trends, as they can capture fluctuations in trends over time (for example, a decrease 

followed by an increase). Thus, additional data and analyses are required to provide more robust 

trends and detailed trajectories as well as correlations of biodiversity trends with trends of their 

drivers. 
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2.2 Habitat suitability modelling 

2.2.1 Objective 

Based on available large-scale spatial data, we model habitat suitability requirements of coastal and 

marine species protected under Habitat and Bird Directive legislation to understand their present and 

predict their future distribution using ensemble models.  

2.2.2 Background 

The European Union’s Habitats Directive and Birds Directive (Council directive 92/43/EEC; Directive 

2009/147/EC) are essential frameworks in the battle against biodiversity loss. They aim to preserve 

characteristic habitats with their species of interest. Annexes II and IV of the Habitats Directive lists 

marine mammals, including harbour porpoises and bottlenose dolphins, that require strict protection. 

To support effective management and conservation under these directives it is essential to 

understand both the current distribution of these species and how their habitats may shift in the 

future under climate change.  

Habitat suitability models (HSMs) are commonly used to understand species habitat requirements and 

distributions. HSMs fit the statistical relationship between observed species occurrences and 

environmental conditions, allowing predictions of where relative suitable habitat is located across a 

study area. Numerous modelling algorithms and implementations exist, each with their own strengths 

and weaknesses. Ensemble models combine these individual models, leveraging their differences, to 

obtain more robust predictions. 

Public biodiversity databases such as (Eur)OBIS and GBIF (EurOBIS; GBIF 2025) provide extensive 

records of species occurrences. Nonetheless, these data are often collected with varying methods and 

for specific sampling/research purposes, resulting in data being unevenly distributed in space and 

time. Comprehensive environmental datasets are openly available from infrastructures such as 

EMODnet (Beja et al. 2024) (e.g. bathymetry) and the Copernicus Marine Environment Monitoring 

Service (CMEMS) (Copernicus Marine Service 2025) (e.g. temperature, salinity, productivity) and 

complementing the biological observations. These combined resources make it possible to assess how 

environmental drivers shape species distributions today and to project potential changes under future 

climate scenarios. 

2.2.3 Methodology 

Two modelling approaches are implemented to generate habitat suitability predictions with two 

temporal scopes: (1) monthly predictions to characterise seasonal dynamics; and (2) decadal 

predictions to assess long-term trends under Shared Socioeconomic Pathways (SSP, Riahi et al. 2017) 

climate scenarios (2020-2100).  

The study focused on regions II, III and IV of the OSPAR Maritime Area, which include the Greater 

North Sea, the Celtic Seas, and the Bay of Biscay and Iberian Coast. These regions were chosen because 

of the availability of both biological and environmental data required for the modelling approach, and 

because they cover key habitats for many of the species protected under the Habitats Directives.  
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Biological data - Species occurrence data were obtained from EurOBIS, the European node of the 

Ocean Biodiversity Information System, which provides open-access records of marine species 

occurrences. We focused on four marine mammal species of conservation interest: harbour porpoise 

(Phocoena phocoena), harbour seal (Phoca vitulina), common dolphin (Delphinus delphis), and 

bottlenose dolphin (Tursiops truncatus). These were selected from the species listed in Annex II and 

IV of the Habitats Directive (f Council Directive 92/43/EEC), with additional filtering to ensure sufficient 

data availability. Records were downloaded from EurOBIS for the years 2000–2019, and quality control 

steps were applied to remove strandings, museum specimens, duplicates, and records outside the 

study area. To reduce bias from oversampled locations or periods, records were thinned so that only 

one presence per grid cell and time step (month or decade) remained. 

Because species occurrence data from public databases are often biased towards areas of higher 

sampling effort, we applied a background sampling approach that accounts for this. All available 

records of marine mammals were used to estimate sampling intensity, and background points were 

drawn with higher probability in areas of higher effort. 

Environmental data - Sea surface temperature, salinity, and net primary productivity were obtained 

from the CMEMS (Copernicus Marine Service Information; Global ocean low and mid trophic levels 

biomass content hindcast) while bathymetry was downloaded from EMODnet. Environmental data 

were collected at a spatial resolution of 0.083 degrees. To comply with the temporal resolution of the 

other environmental variables, net primary productivity was aggregated into monthly averages, and 

both monthly and decadal climatologies were created. For the decadal predictions, environmental 

layers were downloaded from Bio-ORACLE (Tyberghein et al. 2012; Assis et al. 2024). The present data 

was downloaded for decades 2000-2010 and 2010-2020. The future projections were downloaded for 

decades between 2020-2030 and 2090–2100 under a range of climate change scenarios (SSP1-1.9, 

SSP2-4.5 and SSP5-8.5) (Riahi et al. 2017).  

Modelling approach - Habitat suitability modelling was carried out using an ensemble approach, 

combining several different algorithms that are commonly used, including Random Forest, 

Multivariate Adaptive Regression Splines (MARS), Maximum Entropy (MaxEnt), Extreme Gradient 

Boosting (XGBoost) and Generalized Additive Models (GAMs). Models were trained using subsets of 

the biological and environmental data and evaluated using cross-validation to estimate their 

performance in the absence of a true validation test set.  

After training, the final ensemble models were fitted on all available data and used to generate habitat 

suitability maps across the study area. Predictions were made for both monthly and decadal 

climatologies of the present period, as well as for future decades under the different SSP climate 

scenarios. Habitat suitability was expressed on a relative scale from 0 to 1, indicating areas that are 

less or more suitable for the species.  
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2.2.4 Results and discussion 

2.2.4.1 Species occurrences across the study area 

The occurrence data for harbour porpoises (Appendix A, Figure A1) shows clear variation across 

months, both in terms of spatial coverage and intensity. Some months and areas have far more 

records than others. This reflects well-known spatial and temporal biases arising from using public 

datasets originally collected for specific purposes, and not necessarily in a harmonised manner across 

the spatial and temporal scales covered for these models: for example, there is more sampling effort 

along shipping routes and close to the coast. When records are aggregated to the decadal scale (as 

described in section 2.2.3), these differences even out to some degree, reducing the impact of 

temporal gaps for certain areas. Nevertheless, some regions remain overrepresented to others 

considering their sampling effort.  

Occurrences of harbour seals in the datasets used are mostly restricted to coastal areas around the 

North Sea, with few records in central parts of the North Sea (Appendix A, Figure A2). Occurrences of 

common dolphins covered predominantly the Iberian coast and the Bay of Biscay, extending into the 

Celtic Seas during summer, and with very scarce records present in the North Sea (Appendix A, Figure 

A3). Bottlenose dolphin occurrences largely resemble those of common dolphins, with very limited 

records in the North Sea (Appendix A, Figure A4). 

Public databases such as (Eur)OBIS include many datasets collected over different time spans, each 

with their own methodologies and sampling designs. This richness is valuable, but it also introduces 

inconsistencies when multiple data sources are used for a study. The approach taken here was to 

simplify these records to a grid-level presence, which inevitably loses detail but makes it possible to 

combine the available data into a format usable for large-scale modelling. 

2.2.4.2 Model evaluation 

Model evaluation suggests that the ensemble approach was able to distinguish presence from 

background reasonably well based on the Continuous Boyce Index and ROC AUC under cross-

validation. The metrics provide an indication of reliability, but it is important to stress that we lack an 

independent validation dataset. When using these performance metrics with presence-only data, they 

depend on the amount of background points and the method used to generate them. 

2.2.4.3 Monthly habitat suitability predictions 

Monthly habitat suitability predictions are able to inform about habitat suitability and possible usage 

by a species in the short-term, providing insights valuable to inform human activities and marine 

spatial planning in current scales. The monthly prediction maps show changes in habitat suitability 

throughout the year for all four species.  

For harbour porpoises (Figure 2.1), the Celtic Seas and wider North Sea are generally predicted as 

suitable throughout the year, with highest habitat suitability during the winter predicted in the 

southern and more coastal parts of the North Sea, matching well with the occurrences of the species 

(Appendix A, Figure A1).  
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Figure 2.1. Harbour porpoise predicted monthly habitat suitability in OSPAR regions II-IV. 

Predicted habitat suitability of harbour seal (Figure 2.2) shows highest values restricted to coastal 

areas, with few obvious seasonal changes, such as higher predicted habitat suitability in the central 

North Sea during the summer months. Nevertheless, these changes in summer habitat suitability may 

be largely influenced by some limited occurrences in the dataset further off-shore in central parts of 

the North Sea (Appendix A, Figure A2) and should be interpreted with caution.  



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling                                                      

  

17 
  

 

Figure 2.2. Harbour seal predicted monthly habitat suitability in OSPAR regions II-IV. 

For common dolphins (Figure 2.3), high habitat suitability is predicted along the Iberian coast and the 

Bay of Biscay throughout the year. During spring and summer, predicted suitable habitat extends 

further north and across the North Sea, despite occurrences in the dataset being scarce in this area 

during the summer (Appendix A, Figure A3).  Northern records seem to strongly influence the monthly 

models showing a much higher suitability in these periods. 
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Figure 2.3. Common dolphin predicted monthly habitat suitability in OSPAR regions II-IV. 

For bottlenose dolphins (Figure 2.4), predicted habitat suitability largely resembles that of common 

dolphin, with high values along the Iberian coast and the Bay of Biscay throughout the year and 

suitable habitat extending into the North Sea during the summer. In the same way as with common 

dolphin, sensitivity to the records in the north (Appendix A, Figure A4) coming out of the incidental 

sightings dataset may be influencing the predictions.  
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Figure 2.4. Bottlenose dolphin predicted monthly habitat suitability in OSPAR regions II-IV. 

2.2.4.4 Decadal habitat suitability predictions for current and future climate scenarios 

While monthly habitat suitability predictions can inform about habitat suitability and possible usage 

by a species in the short-term, predictions aggregated across longer scales (such as decadal) allow to 

better understand habitat suitability for a species linked to a future changing climate. 

Under present conditions, highest habitat suitability for harbour porpoise is predicted across the 

North Sea, the English Channel and the Celtic Sea (Appendix A, Figure A5), matching well with the 

species occurrence records (Appendix A, Figure A1). Future projections under SSP climate scenarios 

(Figure 2.5) suggest an overall reduction in suitable habitats across decades and under all future SSP 
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scenarios, possibly linked to increasing sea surface temperatures. The strongest declines are predicted 

under the SSP5-8.5 scenario, in which the currently highly suitable areas in the southern North Sea 

(Appendix A, Figure A5) would suffer a large reduction in habitat suitability (Figure 2.5). 

 

Figure 2.5. Harbour porpoise habitat suitability differences between current decadal predictions and 

future decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle) and 585 

(bottom) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right). Predicted 
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habitat suitability for decade 2010-2019 and for all future scenarios are available in Appendix A, Figure 

A5 and Figure A9, respectively. 

 

Figure 2.6. Harbour seal habitat suitability differences between current decadal predictions and future 

decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle row) and 585 

(bottom row) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right). 

Predicted habitat suitability for decade 2010-2019 and for all future scenarios are available in 

Appendix A, Figure A6 and Figure A10, respectively. 
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Predicted habitat suitability for harbour seal during the last two decades (Appendix A, Figure A6) is 

also highest in the southern North Sea, matching well with the species occurrences (Appendix A, Figure 

A2). In the coming decades, predicted habitat suitability for harbour seals is also expected to decrease 

across all SSP scenarios in the Southern North Sea, with most marked reductions under the SSP5-8.5 

scenario (Figure 2.6). Nevertheless, habitat suitability seems to be predicted to increase in previously 

less suitable habitats in the eastern North Sea around Denmark (Figure 2.6), likely due to a change to 

more suitable environmental conditions for the species around that area.  

Predicted habitat suitability during the last two decades for common dolphin and bottlenose dolphin 

was highest around the Iberian coast and the Bay of Biscay (Appendix A, Figure A7 and Figure A8, 

respectively). Future projections suggest a marked reduction in habitat suitability around the Iberian 

coast and the Bay of Biscay for both species (Figure 2.7 and 2.8). Surprisingly, habitat suitability is 

predicted to increase for common dolphins in some areas further north (i.e. North Sea), which 

currently has a very low habitat suitability for this species (Appendix A, Figure A7). The changes are 

even more striking for bottlenose dolphins, with positive changes in habitat suitability in the North 

Sea and offshore areas of the Atlantic. The changes for both species seem to reflect temperature-

driven changes under the different future SSP scenarios.  

Overall, habitat suitability for all species modelled (harbour porpoise, harbour seal, common dolphin, 

and bottlenose dolphin) appears to decrease across all the future SSP scenarios used, with currently 

suitable areas where these species occur being impacted in the future. Despite some increases in 

predicted habitat suitability in some specific areas in the future (e.g. for common and bottlenose 

dolphins), the predictions of these models are only based on environmental conditions and ignore any 

biological links. Biological variables, such as the associated changes in food availability in new and 

completely different ecological areas, or the impact on reproductive grounds, are key to 

understanding the future real impact on the populations. For example, habitat shifts favouring off-

shore or open ocean environments, as opposed to coastal areas currently used by the species, may 

translate into changes in food availability which may prevent the actual use of the predicted suitable 

habitat in the future, for example. Thus, the outcomes of these models should be interpreted with 

caution, as they do not incorporate the full complexity of biological systems and therefore are limited 

in the predictions that they can provide.  

These results demonstrate both the potential and the limitations of habitat suitability models based 

on openly available data. Biases in sampling, differences between datasets, and the aggregation of 

information to a monthly or decadal resolution all reduce precision. Environmental variables such as 

temperature or net primary productivity serve as proxies for complex ecological processes. Adding the 

uncertainty of environmental values over these future climate scenarios, the maps should be viewed 

as broad indications of trends rather than precise predictions of where species will be found. At the 

same time, this modelling exercise highlights the value of public biodiversity databases. The ability to 

build these data-driven models depends on the availability of quality datasets. The more consistent 

and comprehensive these records become, the more reliable the predictions will be. 
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Figure 2.7. Common dolphin habitat suitability differences between current decadal predictions and 

future decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle row) and 

585 (bottom row) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right). 

Predicted habitat suitability for decade 2010-2019 and for all future scenarios are available in 

Appendix A, Figure A7 and Figure A11, respectively. 
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Figure 2.8 Bottlenose dolphin habitat suitability differences between current decadal predictions and 

future decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle row) and 

585 (bottom row) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right). 

Predicted habitat suitability for decade 2010-2019 and for all future scenarios are available in 

Appendix A, Figure A8 and Figure A12, respectively. 
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2.3 Determining causal relationships 

2.3.1 Objective 

The objective of this section is to combine high resolution oceanic numerical modelling with 30-years 

of atmospheric, oceanographic and ecological data at a coastal LTER site to derive causal relationships 

between the external forcing and the biological response.  

Additionally, we aim to develop AI predicting tools which, in the future, will allow targeting specific 

biological components of the ecosystems by integrating the outcome of the analysis of local genomic 

data from the NEREA Augmented Observatory (WP2). Once tuned and adapted, these AI tools can 

serve as a downscaling toolbox for future projections. 

2.3.2 Background 

A recent study on nutrient dynamics in the Gulf of Naples (GoN) at the Long-Term Ecological Research 

MareChiara site (LTER-MC) (Romillac et al., 2023) provided a detailed analysis of how anthropogenic 

pressures and climate variability shape nutrient input and phytoplankton biomass. Based on over 

three decades of data, it highlighted the interplay between terrestrial nutrient inputs and atmospheric 

forcing. Further, Kokoszka et al. (2023) observed a long-term shallowing of the mixed layer depth and 

linked it to changes in wind patterns and freshwater input, making it a key indicator of system 

responses to climatic changes. Based on these two publications, we designed and run a study to 

explore the ecosystem evolution under future climate scenarios.  

Figure 3.1. The Gulf of Naples, in the Western Mediterranean Sea. Back cross: LTER-MC sampling site; 

blue cross: Sarno’s river mouth. 
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Figure 3.1 illustrates the interplay between terrestrial influences, atmospheric forcing, and circulation 

in shaping coastal dynamics and primary productivity in the Gulf of Naples. Key factors considered 

include freshwater inputs, quantified using proxies such as freshwater content, runoff, and 

precipitation. Freshwater inflows, particularly from rivers, generate plumes and filaments (Iermano et 

al. 2012), which are transported by the wind-driven circulation, with stratification controlling their 

dilution. Vertical mixing disperses these water parcels, alternating with periods when local conditions 

are shaped by off-shore circulation. Our first aim is to determine whether this dynamic interplay, 

which governs nutrient distribution and coastal primary production, can be effectively hindcasted or 

forecasted using a limited set of variables. 

Using a hybrid statistical approach that combines mechanistic and machine learning models, we 

integrate long-term data from in situ observations with reanalysis data. Since chlorophyll-a is a key 

proxy for phytoplankton productivity (Falkowski & Kiefer 1985) and, indirectly, food web responses, 

we analyse its variations in relation to freshwater inputs and stratification as indicators of the Gulf of 

Naples’s physical and geochemical dynamics. Leveraging long-term monitoring data, we apply 

Random Forest algorithms to assess these relationships. The preliminary dynamical analysis relies on 

the most complete dataset available, while a reduced set of key variables is successively used to set 

up our predictive model, ensuring both comprehensive analysis and practical forecasting. 

We aim, first, to produce a mechanistic understanding of the response of the coastal ecosystem to 

external forcing and, second, to estimate the possible ecosystem responses to climate change. 

2.3.3 Methodology 

The LTER-MC site (14.25°E, 40.80°N) is located in the Gulf of Naples over a depth of ~75 m (Fig. 3.1). 

It has been sampled since January 1984, but to ensure standardised data, we focus on the period from 

January 2001 to February 2020, when chlorophyll-a and nutrient sampling was conducted regularly 

on a weekly basis. Hourly data for horizontal wind speed components and precipitation was retrieved 

from VHR-REA_IT Copernicus ERA5 dataset (Raffa et al. 2021). As a measurement of stratification, the 

Mixed Layer Depth (MLD) was calculated based on Ekman dynamics using wind data. Freshwater 

Runoff was estimated as the freshwater index FW (Kokoszka et al. 2023), calculated using the averaged 

river discharge rates 𝑟 (𝑚3 𝑠−1) extracted from the European Flood Awareness System provided by 

Copernicus (Wetterhall 2019). We use high-quality flagged data for three groups of variables: (i) 

chlorophyll-a (CHL), (ii) physical variables, including temperature (T), salinity (S), precipitation (P), wind 

velocity (|U|), wind direction (dir), mixed layer depth (MLD), and freshwater runoff (FW), and (iii) 

biogeochemical variables, including dissolved oxygen (DO), ammonium (NH₄), nitrate (NO₃), nitrite 

(NO₂), dissolved inorganic nitrogen (DIN), phosphate (PO₄), and silicate (Si). We will refer to this 

ensemble of data as the “Full dataset”. 

For the 2020-2070 period, no chlorophyll or biogeochemical estimations can be obtained. We 

retrieved the wind and precipitation variables described above from the VHR-PRO-IT (Very High-

Resolution PROjections for ITaly) (Raffa et al. 2023) climate projections based on the IPCC 

Representative Concentration Pathways RCP4.5 and RCP8.5 (IPCC 2014) over the Italian territory. The 

MLD was calculated based on the wind variables. The WF was calculated using the estimated 
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precipitation on the Bay of Naples, and on the Bay and the catchment area to assess inputs from river 

discharge. This resulted in four datasets, two per RCP scenario, half considering the catchment area 

and half not considering the catchment area. We refer to these four datasets as the “Projection 

datasets”. 

We applied a Random Forest (RF) regression (Breiman 2001) to the “Full dataset” and ran a Feature 

Importance Analysis to determine the main predictor of the chlorophyll-a. RF is a supervised Machine 

Learning algorithm based on decision trees that performs pattern recognition for classification and 

regression tasks. “Training” is the learning phase of the algorithm, realized on 67% of available data 

the RF classifies a set of variables to predict a target. “Validation” is performed with the 33% of data 

remaining: this fraction is passed to the RF that produces a prediction that we can compare to the 

target fraction that was excluded from the learning. The importance of predictors in the fitting is 

determined as the Gini importance in % and the Pearson coefficient is used to evaluate the strength 

of the correlations. We used the “Full dataset” with the CHL as the target and the physical and 

biogeochemical variables as predictors. 

Based on our finding that salinity is the strongest predictor of chlorophyll levels, we introduce a 

parameterization that links salinity to two key factors: (i) its relationship to water column stratification 

and (ii) cumulative freshwater discharge. We developed a minimal machine learning algorithm that 

uses climate projections by modelling Salinity and Chlorophyll dynamics using a minimal setup of 

physical parameters. We build on previously established dependencies: chlorophyll response can be 

predicted from salinity changes, and salinity changes are driven by freshwater inputs and 

stratification. The process involves two steps: (a) predicting salinity variations from physical 

parameters, and (b) modelling chlorophyll response based on salinity changes. We test the use of a 

minimal set of physical parameters through various simplified trainings—starting with best estimates 

for S and CHL, then progressively using less accurate ones to assess model degradation. 

Finally, we estimate the chlorophyll response using climate projections until 2070. Four RF trainings 

are generated (two for RCP4.5 and two for RCP8.5, two “with catchment”, identified in the following 

as *) and two “without catchment”, identified as **) using the “Projection datasets”. To ensure 

consistency between training and projections, the model training is performed using precipitation 

data collected between 2001 and 2020, while the projections are generated using the estimated 

precipitation based on the climate projections for the period between 2001 and 2070. We fit a linear 

relationship between yearly variations in salinity and chlorophyll to quantify the primary production 

response to salinity changes, providing a basis for estimating annual carbon uptake in the marine 

ecosystem. This approach allows quantification of CO₂ removal from the atmosphere and Dissolved 

Inorganic Carbon uptake based on salinity-driven chlorophyll variations. For each distinct training the 

average slope is calculated between the two RCPs. 
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2.3.4 Results and discussion  

2.3.4.1 Chlorophyll-a predictors 

Feature importance analysis (Fig. 3.2a) of the predictor for log-transformed chlorophyll-a 

concentrations, built using the “Full dataset”, identifies surface salinity as the main predictor, 

contributing over 35% to the model’s explanatory power, followed by nitrate, phosphate, and MLD 

(~10%). The Pearson correlation coefficient (0.751) indicates a strong alignment between predictions 

and observations, capturing overall chlorophyll trends despite some discrepancies at extreme values.  

The time series comparison confirms the model’s ability to reproduce seasonal and interannual 

chlorophyll fluctuations, closely matching observed peaks and troughs, though certain events (e.g., 

springs 2012 and 2013) remain challenging to replicate. The annual averaged series further 

demonstrates the model’s robustness over nearly two decades, successfully capturing broad temporal 

patterns, with deviations likely linked to extreme events or episodic nutrient inputs beyond the 

resolution of weekly predictors. 

Figure 3.2. Random Forest Model Performance for Chlorophyll-a Prediction in the Gulf of Naples. 

Training on the historical chlorophyll-a data (obs.) using various environmental predictors. Importance 

of each predictor variable is indicated with STD error bars (top right), and time series comparisons 

(bottom left: weekly, arbitrarily shown between 2010-2015; bottom right: inter-annual) illustrate 

model accuracy and variability. Note the gap 2005-2006 on the inter-annual due to lack of BGC 

observations in the merged time series. 
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2.3.4.2 Linkage between salinity and physical factors 

The simplified model accurately predicts surface salinity, with robustness tested across different 

training levels, from the best estimator to more simplified approaches (S* and S**, in Figure 3.3). 

Despite relying on simplified salinity predictions from S* and S**, the RF model still maintains a 

significant correlation with observations and captures key patterns in the time series (Figure 3.4). 

Figure 3.3. Weekly (left) and inter-annual series (right) of Mixed Layer Depth (top) and surface salinity 

(bottom) in the Gulf of Naples. a,b: Comparison between the estimated Ekman layer and measured 

Mixed Layer Depth (MLD, thick grey). Two versions are shown: 𝐿𝐸 (black line) uses best available in 

situ observations (vertical stratification) together with wind data products, while 𝐿𝐸* (pink line) is a 

simplified version relying on averaged monthly vertical profiles to replace direct observations. c,d: 

Surface Salinity Parameterizations. Observations (thick grey) are compared with two parametrization 

outputs: 𝑆𝐿𝐸 (black, based on 𝐿𝐸), and 𝑆𝐿𝐸 ∗ (pink, based on 𝐿𝐸*).  

Figure 3.4. Random Forest Model Performance for Salinity using simplified estimators. Training S* and 

S** use simplified predictors to assess model robustness under data-scarce conditions. Importance of 

each predictor variable is indicated with STD error bars. 
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2.3.4.3 Future projections 

The projections indicate declining trends in precipitation and wind, which, in our models, result in 

increasing salinity and a corresponding decrease in chlorophyll levels. Both RCP4.5 and RCP8.5 

scenarios show a declining trend in wind speed from 2020 to 2070 (RCP4.5: -0.0018 m s⁻¹/year; RCP8.5: 

-0.0047 m s⁻¹/year; Fig. 3.5). The decline is steeper and significant under RCP8.5 (pv = 0.0069), with a 

visible shift beyond 2045. Similarly, precipitation decreases in both scenarios (Fig. 3.5b), though only 

RCP4.5 shows a statistically significant trend (RCP4.5: -0.0727 mm h⁻¹/year, p = 0.0428; RCP8.5: -

0.0644 mm h⁻¹/year, pv = 0.1247). Salinity and chlorophyll trends vary depending on the RF training 

method, distinguishing between runoff-influenced freshwater (FP, Figure 3.5c,d) and direct 

precipitation without catchment (p, Figure 3.5e,f). 

Figure 3.5. Projections of (a) wind and (b) precipitation, under RCP4.5 and RCP8.5 Scenarios (2020-

2070). Surface Salinity and Chlorophyll-a are obtained from projections in the training * (c-d), and in 

the training ** (e-f). Linear trends are emphasized with metrics to assess their significance. 
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Observed chlorophyll shows a distinct bimodal distribution, with a lower peak in autumn and a higher 

peak in spring, when productivity increases. Both RF trainings capture this bimodality but yield 

contrasting future projections depending on whether basin catchment effects are considered. With 

basin catchment, under RCP4.5, bimodality weakens over time, particularly by the 2060s, as reduced 

precipitation lowers runoff and nutrient supply. The spring peak diminishes, while the autumn peak 

becomes more dominant, reflecting an overall decline in chlorophyll-a concentrations. Under RCP8.5, 

this effect is comparable, leading to a near-monomodal distribution by 2060–2069. The combined 

impact of reduced runoff and salinification under high emissions thus appears to severely constrain 

chlorophyll-a production. 

The observed variations from year to another, for all scenarios and training (Fig 3.6), show the negative 

response of chlorophyll to salinity changes. Considering the basin catchment (Fig. 3.6a), a |ΔCHL| of 

~0.35 mg m⁻³/year responds to a |ΔS| of 0.1 g kg⁻¹/year. Without catchment (Fig. 3.6b), the response 

is steeper, with a |ΔCHL| of ~0.50 mg m⁻³/year for the same salinity change, indicating greater 

variability in systems lacking runoff buffering.  

Figure 3.6. Relationship between year-to-year changes in surface salinity and chlorophyll-a 

concentrations, and associated CO₂ fluxes under different conversion scenarios. (a,b) Relationship 

between interannual differences in salinity (ΔS) and chlorophyll-a concentrations (ΔCHL); (c,d) CO₂ 

variations associated to subsequent primary production changes (ΔPP), for three carbon conversion 

factors (30, 50, and 80 mg C / mg CHL). 
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2.3.4.4 Discussion 

The emergence of salinity as a primary predictor of chlorophyll concentration in the Gulf of Naples 

highlights the role of freshwater inflows and stratification as key modulators of primary productivity. 

Our model suggests a progressive increase in salinity and a decline in chlorophyll, particularly in spring, 

with uncertainties in autumn trends. As expected, land-based changes (e.g., precipitation, basin 

catchment effects) exert a strong influence on coastal ecosystems. Building on Romillac et al. (2023), 

we attribute salinity’s dominant role as a predictor primarily to nutrient loads carried by runoff, rather 

than its impact on stratification. While high stratification can enhance phytoplankton accumulation by 

reducing vertical mixing, light limitation is negligible at the LTER-MC site (75 m depth), even in winter.  

The study also quantifies the yearly relationship between salinity and chlorophyll, enabling the 

development of an index to track primary production responses under climate projections. Our carbon 

uptake scaling provides a first-order estimation but relies on general carbon conversion factors, 

omitting phytoplankton adaptation corrections and assessing only temporary inorganic carbon 

fixation, part of which may be exported beyond the photic zone. The impact of salinity variations on 

phytoplankton accumulation could also lead to broader ecological shifts, influencing species 

composition and community structure as less productive conditions favour different phytoplankton 

assemblages and marine organisms. 

Studies (e.g., Zhang et al., 2019) using the Soil and Water Assessment Tool (SWAT) demonstrate that 

urbanizing watersheds experience increased runoff and peak flows due to reduced infiltration under 

RCP4.5 and RCP8.5. This effect was not accounted for in our study, where we applied a constant 

absorption rate of 27%. If absorption capacity declines, runoff buffering weakens, causing greater 

variability in freshwater inputs that could align more directly with precipitation rates. Finally, even in 

the case of little changes in annual mean precipitation, the expected increase of extreme precipitation 

events, where rain is concentrated on short periods, may reduce the actual biomass accumulation 

since the efficiency of nutrient uptake largely decreases in such short events. 

The Random Forest approach demonstrates that salinity variations at a given point can be effectively 

captured using freshwater runoff and stratification with a minimal set of input variables, independent 

of in situ observations. This highlights the efficiency and robustness of simplified models in accurately 

representing coastal dynamics. Nevertheless, we expect that the oceanic transport (i.e., the Gulf inner 

circulation) can play a role as modulator of the impact of the river on the sampling site, given the 

distance (about 20km) between the latter site and the river mouth.  To improve understanding of 

advection-driven salinity distribution a refined circulation index incorporating currents, eddies, and 

lateral intrusions is needed (Kokoszka et al. 2023). Preliminary analyses implementing a numerical 

model of the circulation of the Gulf (ROMS) show that changes of the inner circulation can impact the 

transport of nutrients to the MC. Nevertheless, they do not improve the predictions of the machine 

learning tool.  Moreover, to further deepen the understanding of the causal relationships between 

forcings and biological responses, we are now coupling the model for ocean physics with a 

biogeochemical model (Darwin model, MIT), in synergy with the EU project Biocean5D.  
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The use of RCPs provides a structured framework for exploring climate futures but also emphasizes 

the need for continuous updates and intercomparison of new models (O’Neill et al. 2016). 

Understanding these pathways supports their translation into Shared Socioeconomic Pathways (SSPs), 

which guide regional adaptation strategies by anticipating ecological impacts on coastal systems like 

the Gulf of Naples (e.g., Riahi et al. 2017). This study underscores the value of interdisciplinary data 

integration, aligning the Gulf of Naples with broader efforts to refine climate scenario frameworks 

(O’Neill et al. 2016). By advancing data-driven modelling approaches, it contributes to the 

development of Digital Twin Ocean (DTO; Tzachor et al. 2023) initiatives that will finish by joining such 

as the Digital Twin of the terrestrial water cycle, which leverages high-resolution Earth observations 

to enhance climate impact assessments and ecosystem management. 

This analysis underscores how freshwater inputs, shaped by land use and by the impact of climate 

change on land, modulate coastal ecosystem responses under climate change. It also highlights the 

importance of basin catchment modelling for improved coastal ecosystem assessments and 

projections. In sum, long-term monitoring and interdisciplinary approaches are needed to enhance 

knowledge of the functioning of ecosystems, hence to better manage them under future climate 

scenarios.  
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3. Conclusion 

In this report we presented three studies dedicated to the identification of biodiversity trends and 

their underlying drivers based on publicly available data. Moreover, we developed predictive models 

to project biodiversity trends into the future. Additionally, to ensure the reproducibility of our 

analyses, all our metadata will be accessible in the near future as part of Marco Bolo Work Package 1, 

and virtual workflows to reproduce our analyses will be accessible via LifeWatch. 

The first study shows overall stable trends for coastal and marine biodiversity across European regions 

and biotic groups. Some positive trends are detected for specific groups (i.e. birds, invertebrates) and 

regions (i.e. Baltic), although this cannot be generalized across all the data analysed. 

The second study assesses the seasonal distribution of four marine mammal species on the West coast 

of the European continent. Using decadal habitat suitability models, the distribution of the four 

species is projected into future decades under different climate scenarios. The projections, specially 

under the Shared Socioeconomic Pathway SP585, show a generalized reduction in suitable habitats 

across species, particularly marked in coastal areas. 

The third study uses long-term data to determine that freshwater inputs in the Bay of Naples drive 

water salinity, which is the main predictor of chlorophyll-a in the bay. Using a machine learning 

approach, a limited set of physical variables was sufficient to produce robust estimations of primary 

production. Future climate projections show a decrease in rainfall that will lead to an increase in 

salinity and consequentially to a reduction of chlorophyll-a. 

In conclusion, temporal changes in biodiversity are driven by many interacting factors: some of those 

factors are dependent on human activities, negatively (i.e. climate change, overfishing, pollution) or 

positively (i.e. establishment of protected areas, habitat restoration). During the last decades, 

biodiversity in coastal and marine European habitats has been stable, but with variations among sites. 

Nevertheless, future climate projections (i.e. warmer waters and decreased rainfall) will translate into 

a change in conditions for coastal and marine European biodiversity. At the same time, other anthropic 

pressures can worsen the situation, but new legislation and policies can have beneficial effects.  

The three studies presented here show the potential of publicly available data combined with 

statistical modelling and machine learning techniques. Nevertheless, all three studies are subject to 

strong data limitations, making extrapolations difficult: the data analysed is not homogeneously 

distributed across regions and biotic groups, and the analyses are restricted to sites and species with 

high quality datasets. 

To produce better analyses and projections, we strongly recommend the open publication of existing 

datasets not currently openly available and to encourage harmonisation of biodiversity monitoring 

across the continent, as well as to invest in advanced machine learning methodologies. By 

understanding the past and present trends and future projections of coastal and marine biodiversity, 

we can guide conservation efforts to ensure healthy ecosystems for the next decades.  
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Appendix A Additional maps 
A1 Seasonal presence maps 

 

Figure A1. Harbour porpoise occurrences aggregated per season for the period (2000-2019). 

 

Figure A2. Harbour seal seasonal presence points, aggregated for the period (2000-2019). 
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Figure A3. Common dolphin seasonal presence points, aggregated for the period (2000-2019). 

 

Figure A4. Bottlenose dolphin seasonal presence points, aggregated for the period (2000-2019). 
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A2 Decadal predictions present 

 

Figure A5. Harbour porpoise decadal predictions for 2000-2009 decade (left) and 2010-2019 decade 

(right). 

 

Figure A6. Harbour seal decadal predictions for 2000-2009 decade (left) and 2010-2019 decade (right). 
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Figure A7. Common dolphin decadal predictions for 2000-2009 decade (left) and 2010-2019 decade 

(right). 

 

Figure A8. Bottlenose dolphin decadal predictions for 2000-2009 decade (left) and 2010-2019 

decade (right). 
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A4 Decadal predictions future 

  

Figure A9. Harbour porpoise future decadal habitat suitability predictions under climate scenarios 

SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100. 
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Figure A10. Harbour seal future decadal habitat suitability predictions under climate scenarios 

SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100. 
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Figure A11. Common dolphin future decadal habitat suitability predictions under climate scenarios 

SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100. 
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Figure A12. Bottlenose dolphin future decadal habitat suitability predictions under climate scenarios 

SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100. 
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Appendix B Ecological Interactions and Regime Shift Detection for 

MareChiara Time Series 
B1 Introduction 

The primary goal of this research was to analyse the ecological interactions between various 

biogeochemical parameters at Mare Chiara, with a focus on identifying the main drivers of 

productivity in this region and understanding their dynamics over time. 

Data for the analysis came from the LTER-MC research station in the Gulf of Naples, from 1984 to 

2019. This biogeochemical time-series data was first filtered, cleaned and transformed, and 

subsequently used to train several Random Forest prediction models to estimate the importance of 

each parameter on chlorophyll production. Having identified the main drivers, the focus shifted to 

the system’s dynamics. An algorithm was developed to detect regime shifts by analyzing variations 

on the prediction performance of Random Forest models over time. 

This report details the methods and results at each step of the analysis, along with a discussion on 

their strengths and limitations. 

B2 Datasets 

Original Dataset 

The original dataset was acquired in the LTER-MC research station in the Gulf of Naples. It includes a 

time-series of biogeochemical measurements at 10 depths (0, -2, -5, -10, -20, -30, -40, -50, -60, - 70 

m) from 1984 to 2019. 

The available features are: year, month, day, depth, date, TEMP, QF TEMP, PSAL, QF PSAL, AMON, 

QF AMON, NTRA, QF NTRA, NTRI, QF NTRI, PHOS, QF PHOS, SLCA, QF SLCA, CHLT QF; where QF 

stands for quality flag. 

Dataset I: All data 

The cleaning process included removing all rows with missing values and the data before 1996 (due 

to the missing data between 1989 and 1997). The Quality Flags (QF) as it would reduce the dataset 

further. 

New features were then added to the dataset. The surface pressure was assumed to be 1 atm and 

the pressure at other depths p(z) = 1 +  z  atm for each measurement. The mixed layer depth was 

computed for each sample as the depth where the temperature varied 0.8°C from the temperature 

at 10m. For samples where some measurements were removed in the cleaning process, the 

reference temperature corresponded to the measurement closest to 10m. The integral gradient of 

each feature was also obtained for each measurement. For samples with only one measurement, 

the gradient was considered zero; with two measurements, the gradient was the same for both. 



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling                                                      

  

49 
  

The available features are: year, day, month, date, depth, TEMP, PSAL, AMON, NTRA, NTRI, PHOS, 

SLCA, CHLT, GRAD TEMP, GRAD PSAL, GRAD AMON, GRAD NTRA, GRAD NTRI, GRAD PHOS, GRAD 

SLCA, Pressure, MLD. 

Dataset II: Averaged data 

Many biological processes are dependent on depth, either directly or indirectly. Chlorophyll 

production, for instance, peaks at a subsurface layer depth and decreases as depth increases. 

Besides, most parameter values show very small variations until the mixed layer depth, leading to 

the assumption of conservative properties within the mixed layer. Averaging the data within the 

mixed layer depth eliminates the depth bias, enabling a focus on the overall drivers of productivity in 

that location, rather than depth dependent drivers. The second dataset was created with each row 

representing the averaged data from the measurements of each sample, to evaluate how 

eliminating the depth bias affects the results when compared to the first dataset. 

Dataset III and IV: Transformed data 

Data analysis often benefits from transforming data into a normal distribution, as normality is a 

requirement for many statistical techniques. The Box-Cox Transformation was applied to most of the 

numerical features of Datasets I and II to assess the impact of transforming data in the results, and 

the transformed data was stored in Datasets III and IV, respectively. The Box-Cox Transformation is a 

power transformation used to normalize positive data. For the features with negative values (such as 

the gradients), the Cubic-Root Transformation was applied. For the year, the log transformation was 

used due to the magnitude of the values. For the month, a 1-hot encoding transformation was 

applied, adding 12 new features corresponding to each month. 

The features of the new Dataset III and IV remain the same as the ones of I and II, respectively, with 

the addition of the 12 month columns. 

Datasets V - VIII: Data limited to "normal" conditions (CHLT < 3 mg/m3) 

More than 90% of the measurements in Dataset I had chlorophyll values below 3 mg/m3, which will 

be regarded as the threshold for normal conditions. The measurements with chlorophyll values 

above this threshold are therefore considered peak values or extreme conditions. 

Four additional datasets were generated to investigate potential differences in the main drivers of 

productivity in normal vs extreme conditions. For Dataset V, the data from Dataset I was limited to a 

maximum chlorophyll production of 3 mg/m3. For Dataset VI, the data from Dataset V was averaged 

within the MLD. Datasets VII and VIII correspond to Datasets V and VI transformed as described in 

the previous subsection. 

It was not possible to do the same for the peak values due to the reduced amount of data. 

 



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling                                                      

  

50 
  

Tab. B1. Summary of the content of each dataset in the project 

 Limited Averaged Transformed 

Dataset I    

Dataset II  X  

Dataset III   X 

Dataset IV  X X 

Dataset V X   

Dataset VI X X  

Dataset VII X  X 

Dataset VIII X X X 

 

B3 Regression Model: Drivers of chlorophyll production 

B3.1 Random Forests Regression Model 

Random Forests is a widely used ensemble machine learning approach for regression and 

classification tasks. It combines multiple random decision trees, each trained on random sub- sets of 

data, and calculates the output as the average prediction. By utilizing several random trees, this 

method explores more possible predictors, improving the predictive accuracy of the model and 

reducing overfitting. This approach can handle multiple dimensions (features) and non-linear 

relationships, but it is less interpretable than single decision trees and requires significant 

computational resources for training. 

The datasets in this project are not excessively large, are high-dimensional and are likely to have 

complex patterns between features, making Random Forests a suitable choice. 
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The Random Forests Regression model predicts the value of a dependent variable based on the 

independent variables, assigning each independent variable a quantitative measure of its 

importance on the model’s outcome. In the context of this project, this approach allows us to 

understand how each water parameter influences the chlorophyll production, and what are its main 

drivers. 

A baseline model was also computed for each dataset and compared to the RF model, to evaluate 

the accuracy of the optimal models. This baseline model predicts the chlorophyll concentration for a 

given sample as the average of the measured values for the same month in the year before. The 

poor performance of the baseline model highlights the complex interactions between parameters 

and a need for machine learning approaches. 

B3.2 Training and Testing 

A new Random Forests model was trained for each dataset (I to VIII) to evaluate the impact of each 

modification (data transformation, averaging, peaks removal) on model performance. The sklearn  

package in Python was used to implement and analyze all models. 

For each dataset, the dependent variable was isolated from the relevant independent variables, and 

the data was split into training and testing sets. 

The best hyperparameters were obtained with RandomizedSearchCV and its  fit  function by 

performing a randomized search with cross-validation to identify the optimal hyperparameters for 

the model. Instead of testing all possible combinations, a specific number of random combinations 

were tested and compared based on performance to decide on the best set of hyperparameters. 

B3.2.1 Random training-testing data splitting 

Two different approaches to training-testing were compared. The first one splits the data by 

randomly sampling individual points from the dataset to achieve a specific training-testing ratio. 

Most of this project uses 90% as training set and 10% as testing set. This ratio is adjusted to improve 

the performance of the model, with the goal of achieving similar training and testing errors. The 

cross-validation inside the hyperparameter tuning also sampled the testing-training data according 

to the same sampling seed. 

B3.2.2 ’Last 2 years’ training-testing data splitting 

The second approach selects a given number of recent years as testing data and trains on the 

remaining data. The cross-validation inside the hyperparameter tuning also used groups of 

consecutive years to decide on the best model. The test score of each of these folds was computed 

in the end to cross-validate and averaged to produce a metric of the model’s overall accuracy. 

The different training-testing ratios between the first and the second methods might affect the 

model performance, specially in smaller datasets, as larger training sets often promote overfitting 

(see Discussion). 



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling                                                      

  

52 
  

 

B3.3 Model performance 

The accuracy of the model’s predictions was assessed through the mean absolute error (MAE), mean 

squared error (MSE), root mean squared error (RMSE), R-squared (R2) and the correlation (Corr) 

between the predicted and real values. Only the last two metrics were considered when comparing 

models. 

The correlation and R2 for each model’s prediction are presented in Figure B1 and B2, respectively. 

In both cases, a higher value is associated with more accurate predictions and more reliable main 

driver results. 

 

Fig. B1. R2 values for models trained with methods A1 and A2 across eight datasets (Dataset I to 

Dataset VIII). Method A1 is represented with darker bars; method A2 is represented with lighter 

bars. 
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Fig. B2. Correlation coefficients for models trained with methods A1 and A2 across eight datasets 

(Dataset I to Dataset VIII). Method A1 is represented with darker bars; method A2 is represented 

with lighter bars. 

Both Figure B1 and B2 indicate a better performance for Dataset I, where all data is being considered 

without any additional processing. The performance of the models is very dependent on the size of 

the dataset being used. When the size is reduced, by removing the peak values or by averaging the 

data within the MLD, the accuracy of the predictions decreases. The effect of peak removal is seen 

by comparing the correlation coefficient and the R2 values between Datasets I-IV and Datasets V-VIII. 

The effect of averaging the data can be seen by comparing Dataset I to Dataset II, III to IV, V to VI 

and VII to VIII. The exception is the increase in accuracy after averaging the filtered data (Dataset V 

to VI) with the method M2 model. Regardless of the accuracy loss caused by averaging the data, the 

results allow more insightful conclusions on the drivers of productivity in the entire water column. 

Method A1 (darker bars) generally produces better results than Method A2 (lighter bars). This is 

likely because A1 uses a random training-testing split, which increases the chances of a predicted 

value being influenced by data points very close to those in the testing set, making predictions 

easier. In contrast, method A2 relies on learned behavior from past measurements to make 

predictions. A higher accuracy with method A2 means that the interactions between variables are 

similar over time, which results in better predictions. The increase in accuracy with the M2 model 

after averaging the filtered data (Dataset V to VI) leads to the assumption that the productivity of 

the entire water column is more stable in time than the productivity at each depth layer. Besides, 

method A2 seems more sensitive to reduced datasets than A1, likely due to an increased probability 

of overfitting. 

Contrarily to expectations, transforming the data before training the model decreased the accuracy 

of the predictions. The exceptions are the increase in accuracy with method A2 after transforming 



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling                                                      

  

54 
  

the whole dataset (Dataset I to II) and the filtered data (Dataset V to VII). Generally, data 

transformation does not benefit the model’s performance in this project. 

We can show that each dataset modification lowers model performance without substantially 

changing feature importance results. In all cases, reduced dataset size aggravates the accuracy 

decline. 

B3.4 Features importance analysis 

The analysis of feature importance offers insights into the key drivers of chlorophyll production. In 

this project, the combination of top features that contribute to at least 50% of the output is 

considered to represent the relevant drivers. Of those, features with an indi- vidual importance 

greater than 10% are classified as main drivers. If a main driver has a considerably higher importance 

than the others, it is regarded as a predominant driver. 

The feature importances were obtained using the  feature_importances  attribute from sklearn  and 

the summary_plot  function from shap. The former indicates the importance of each feature for the 

predictive regression model, while the latter indicates the importance of each feature for individual 

predictions. The shapley summary plot also illustrates the influence of both the magnitude and the 

signal of each feature on the output. 

The features importance plots for Dataset I, II and III using method A1 are depicted in Figure B3 as an 

example of the output of these functions. 

Averaging the data within the MLD provides clearer insights into the main drivers of chlorophyll 

production as expected. As shown in the center left pane of Figure B3, when analysing individual 

measurement throughout the water column, salinity stands out as the predominant feature, 

explaining more than 20% of the output, followed by the phosphate gradient, contributing half as 

much. However, when considering the entire mixed layer as a whole, salinity remains the most 

important feature (21%), but the mixed layer depth emerges as the second main driver (14%) and 

the gradient of phosphate remains as the third main driver (11%). By averaging the data within the 

mixed layer depth, the dominance of any single feature is reduced, allowing for other important 

interactions to surface. 

The Shapley Summary Plot on the right pane of Figure B3 illustrates how different feature values 

affect the output. For instance, low salinity concentrations are highly favorable for chlorophyll 

production, while high salinity has a negative effect. 

By examining the chlorophyll production at each averaged sample, the main interactions are those 

which have an impact on the entire mixed layer. 

The main drivers of chlorophyll for each model were extracted from these functions. The results are 

illustrated in Figure B4. 
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Fig. B3. Features importance to the model (left) and to individual predictions (right). Results from 

using approach A1 in Dataset I (top), in Dataset II (center) and in Dataset III (bottom). The features 

that explain 50 % of the outcome are presented in bold, with the red line delimiting the 50 %. 

This shows that salinity is the main driver regardless of the modifications to the dataset or methods 

used. The phosphate gradient is also a relevant driver for all cases but the ones with Dataset VI, and 

is a main driver in five of those cases. 

 

Fig. B4. Main drivers for each dataset with respective importances, for models trained with method 

A1 (top) and A2 (bottom). 
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Temperature is identified as a relevant driver for five out of eight datasets, including all datasets 

where the peaks were removed. This indicates that productivity is dependent on temperature in 

normal conditions, but not in peak conditions. 

Likewise, silica is a relevant driver in all cases where the peaks were removed. The productivity of 

this area in normal conditions is therefore dependent on silica as well. Silica is an essential 

component of the structure of some phytoplankton species, which could explain this importance. 

The gradient of salinity contributes approximately 10% to the overall prediction in all cases where 

the data is averaged. This suggests that the gradient of salinity influences the overall productivity of 

the area, rather than directly affecting the chlorophyll concentration at specific depths. 

Similarly, the MLD is only selected as a relevant driver in models trained on averaged data (except 

for Dataset VIII), being a main driver in the non-transformed datasets (II and VI). Besides proving that 

the transformation disrupts the results, this points to the relevance of the MLD to the productivity of 

the water column. According to the respective Shapley Summary Plots, a low MLD can have a strong 

positive effect on the chlorophyll concentration. With MLD as a proxy of turbulence and mixing, this 

means that stratified waters (reduced mixing and turbulence) can benefit the production of 

chlorophyll. However, the Shapley Summary Plots also show that higher concentrations are always 

associated with lower MLD, and vice versa, but the impact of MLD is generally low. The influence of 

this variable is likely dependent on other features, which would explain this variability. 

The gradient of nitrites, the gradient of nitrates and the gradient of temperature are only relevant in 

cases where the data was not averaged. Even though these drivers never contribute more than 9 % 

to the overall prediction, they influence the chlorophyll concentration over the water column and 

should be included in the prediction. 

The year of the measurement had a relevant contribution to the prediction in the cases where the 

data was the most reduced (Dataset IV and VIII). On the contrary, the nitrite concentration is 

relevant in the cases where there is the most data. The reason behind these two importances is not 

clear, but is likely related to the size of the datasets relative to the remaining. 

Only in models with Dataset I is the concentration of phosphate relevant to the overall prediction of 

chlorophyll concentration. 

B3.5 Discussion 

Initially, this project addressed both the drivers of chlorophyll production in a given time and space, 

and the drivers of productivity of the entire water column. Additionally, the drivers under normal 

conditions were analyzed relative to the drivers in any circumstances, to investigate potential 

differences. 

The training of the sixteen models led to the unanimous conclusion that salinity is the primary driver 

of productivity in this area, followed by the gradient of phosphate. Each modification to the original 
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dataset revealed different insights, and the interpretation of this combined set of results offers a 

good understanding of the dynamics in this area. 

Under normal conditions, temperature and silica are the most relevant drivers, together with salinity 

and the phosphate gradient. In the cases where there is no peak removal, these parameters have 

little influence on both the productivity of the water column and the specific chlorophyll production. 

The productivity of the water column is greatly influenced by the salinity gradient, the MLD 

(particularly in non-transformed data) and the year (particularly in transformed data), besides 

salinity and phosphate gradient. 

Chlorophyll production depends mostly on the gradient of temperature, nitrites and nitrates, and on 

temperature, together with salinity and the phosphate gradient. When considering all 

measurements without further modifications, the nitrites and phosphates were relevant as well. 

Transforming the data decreased the accuracy of the models without altering the fea- tures 

importance results, motivating the use of non-transformed data in future analysis. 

Regarding the training-testing data splitting methods, the first approach produced more accurate 

predictions than the second approach. However, this approach is only suitable for analyzing entire 

datasets to extract the interactions between the system’s components. When the aim is to predict 

values based on past measurements-such as forecast or regime shift detection algorithms- the 

second approach must be applied, because the first one is not applicable in these scenarios. 

The method used to split the data into training and testing sets had little to no impact on the 

features' importance. This strengthens the results, as two different approaches produced 

similar/identical conclusions. 

No explicit seasonal analysis was conducted. However, the month was included as a month to allow 

for seasonal patterns to emerge, as an indirect seasonal analysis. The results pointed to inexistent 

seasonal variations, with very low importances given to the month variables in all cases. 

Further analyses include implementing different transformations with the aim of enhancing the 

performance of the model; taking into consideration the quality flags in the original dataset; 

conducting explicit seasonal analysis. 

B4 Regime Shift Detection: Changes in drivers over time 

B4.1 Regime Shift Detection Algorithm 

This task requires a time-series; therefore, Datasets II, IV, VI and VII were used. The decision to use 

four datasets, rather than selecting just one, was made to prevent potential bias in the results. By 

applying the same method to all four datasets, a comparison of the results could be made, allowing 

for more robust conclusions. 
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This algorithm is designed to detect regime shifts in multi-dimensional data by analyzing prediction 

performance errors. At each time step, a Random Forest Regression model is trained using the data 

from the current regime (X samples) to predict the chlorophyll concentration for that time step. The 

same hyperparameters were used for each of the four models (one for each dataset): 

params ={’n_estimators’: 300, ’min_samples_split’: 8, ’min_samples_leaf’: 3, ’max_features’: ’log2’, 

’max_depth’: 11, ’ccp_alpha’: 0, ’bootstrap’: False} 

based on the hyperparameter tuning results from the models trained in the previous section. 

Additionally, a baseline model is created, which predicts the chlorophyll concentration as the 

measured value in the same month in the previous year. The accuracy of these predictions is 

evaluated using the same metrics as before: MAE, MSE, RMSE, R2, and correlation coefficient. If the 

Random Forest model performs worse than a given threshold (R2), the algorithm flags a regime shift. 

The process continues iteratively until the last sample is reached. 

The algorithm records the start date, end date, and feature importances for each identified regime. 

At the end of the process, a new model is trained for each regime using all the samples within that 

regime, and the feature importances are recalculated. 

It is worth noting that the baseline model was initially designed to be the threshold for detecting 

regime shifts. However, its very poor performance made it impossible for the RF model to 

underperform relative to it. As a result, the threshold value was adjusted throughout this study to 

investigate the stability of the system in terms of regime shifts. 

B4.2 Model performance 

B4.2.1 Detection error threshold 

The first analysis investigated the effect of different detection error thresholds on the results, 

namely the number of detected regimes. The datasets in use have 23 years of data, so that is the 

maximum number of regimes that the algorithm can detect. 

Figure B5 illustrates the influence of the detection error threshold on the number of detected 

regimes. 
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Fig. B5. Number of detected regimes in terms of the detection error threshold (R2) used, for the four 

datasets in use. Dataset IV corresponds to Dataset II after transformation; Dataset VIII corresponds 

to Dataset VI after transformation 

The lines for Datasets II and IV, as well as for Datasets VI and VIII, are closely aligned because they 

are essentially the same data. Datasets IV and VIII are transformed versions of Datasets II and VI, 

respectively. 

The number of detected regimes is strongly influenced by the detection error threshold. While a 

dependency on the threshold was anticipated, it was unexpected that the number of regimes would 

remain so high until the threshold was reduced significantly. For Datasets II and IV, the average 

duration of a regime increases to 2 years when regime shifts are identified at an R2<0.2. For Datasets 

VI and VII, this occurs only when the threshold reaches R2<0.1. At detection error thresholds above 

0.45, however, the number of detected regimes equals 

22, suggesting a new regime for every year. This implies that the interactions between drivers and 

chlorophyll production vary significantly from year to year, and making predictions based on the 

previous year will produce poor results. 

There are two interpretations for this behavior: (1) the system is inherently stable, with regime shifts 

only apparent at very low error thresholds, or (2) the system is highly unpredictable, driven by a 

complex combination of variables. The latter suggests that this approach may not be suitable for 

detecting regime shifts in such a dynamic environment. 
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