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Executive Summary

The main goal of this report is to assess biodiversity trends and their drivers in marine and coastal
European ecosystems. To this end, we analysed community level biodiversity trends (section 2.1) and
species level habitat use (section 2.2) during the last decades using data from open sources.
Biodiversity trends are paired with environmental parameters and projected into the future, using
Habitat Suitability Models (section 2.2) and Random Forest Regressions (section 2.3).

The first study analysed European time series for six biotic groups (i.e. birds, fish, invertebrates,
macroalgae, phytoplankton and zooplankton) to estimate temporal trends (1956-2022) in richness,
diversity, and abundance across regions. The data was extracted from open-access databases
(BioTIME, EMODnet, REPHY, FishGlob, Continuous Plankton Recorder Survey). Most communities
showed no significant change, suggesting no further widespread biodiversity loss during the
observation period. Positive trends were found for birds and invertebrates in the Baltic, and negative
ones for fish in the Atlantic. However, uneven data coverage limits this generalization, highlighting
the lack of sufficient rigorous monitoring of biodiversity and of accessibility to existing data.

The second study focused on predicting habitat suitability for coastal and marine species protected
under Habitat and Bird Directives, under current and future Shared Socioeconomic Pathways (SSP)
climate scenarios. Projections are made for four marine mammal species (harbour porpoise, harbour
seal, common and bottlenose dolphins) in OSPAR regions II-1V, using EurOBIS data (2000-2019) and
environmental predictors. Results revealed clear spatial and seasonal patterns in projected suitable
habitats: southward shift for porpoises in winter, seals stay coastal, and dolphins concentrate in the
Iberian region. Future projections suggest an overall reduction in suitable habitats for all four species.
While limited by sampling biases and data inconsistencies, the study demonstrates the value of open-
access biodiversity data for large-scale ecological modelling.

The third study examined climate change impacts on coastal ecosystems, focusing on the Gulf of
Naples (LTER Mare Chiara site). Combining long-term data, reanalysis, and machine learning, the
study found salinity to be a key driver of chlorophyll (phytoplankton) variability, linking land-based
freshwater inputs and ocean dynamics. Using Representative Concentration Pathways to 2070
(RCP4.5, RCP8.5), the model predicts increasing salinity and declining chlorophyll, largely driven by
reduced rainfall and runoff. The findings stress the importance of long-term monitoring and indicate
that land-driven changes may affect coastal productivity more than ocean warming alone.

This report highlights the usefulness of publicly available data but also its limitations. On the one
hand, existing open data allows us to assess long-term biodiversity trends and to project those
trends into the future. On the other hand, the limited data availability reduces the representativity
of the results and decreases the precision of future projections. As biodiversity open-source data
increases in quantity and quality, the potential of future analyses will grow with it.

With this Report, we aim to provide a broad perspective of the past, present and future of marine and
coastal biodiversity across Europe.
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1. Introduction

Assessing the status of ecosystems is of high relevance for conservation, ecology and ecosystem
management. Status assessments include a broad variety of approaches including community metrics
and indicator species. As the specific metrics and surveying methodologies have been standardised
during the last decades, the opportunity to study long term trends, their causes and their future
projections arises.

In Europe, a broad variety of projects, research infrastructures and legislations, including the Marine
Strategy Framework Directive (MSFD) the Integrated European Long-Term Ecosystem, critical zone
and socio-ecological Research Infrastructure (eLTER RI), offer sources of data since many years.
Complementarily, scientific knowledge on the cause-effect relationships between environmental
predictors and biodiversity has grown during the last decades. At the same time, the robustness of
statistical models capable of predicting those relationships grew, being climate models a common
example. In sum, there are big datasets of biodiversity descriptors and of ecological parameters for
long time periods now available, as well as an improved understanding of their cause-effect
relationship, and models able to generate robust future projections of those parameters.

Improvements in time series analyses combined with the increasing amount of biodiversity time series
data provide new opportunities for research, conservation and biodiversity assessment. In recent
years, the amount of scientific papers addressing biodiversity change from local to global scale has
significantly increased. This knowledge gain now allows for calculating trajectories of biodiversity
change and assessing the status of ecosystems at a precise moment in time. Combined with
environmental driver analyses including pollution, climate change and biological invasions, drivers of
biodiversity change could be identified and the respective policies informed. Such analyses could
provide evidence that past conservation efforts paid off, as shown, for example, for European
freshwater biodiversity which significantly improved over the past decades due to the large-scale
implementation of wastewater treatment plants (Haase et al. 2023; Sinclair et al. 2024).

The goal of this report is to assess biodiversity trends and their drivers in marine and coastal European
ecosystems. To this end, we analysed community level (section 2.1) and species level (section 2.2)
biodiversity trends of the last decades using data from open sources. Biodiversity trends are paired
with environmental parameters and projected into the future, using Habitat Suitability Models
(section 2.2) and Random Forest Regressions (section 2.3).
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2. Detection and analysis of biodiversity trends

2.1 Time series analysis

2.1.1 Objective
Based on long-term ecological time series data from publicly accessible databases (e.g. BioTime;
EMODnet), we will quantify trends of coastal and marine biodiversity (abundance, species richness
and taxonomic diversity) of six biotic groups (birds, fish, invertebrates, macroalgae, phytoplankton
and zooplankton) at European scale.

2.1.2 Background

Biodiversity loss is one of the main global-scale challenges our planet is facing. Losses have been
described in marine, freshwater and terrestrial ecosystems, in every ocean and continent (Butchart et
al. 2010). In European marine and coastal waters, biodiversity loss is caused by human activities:
overfishing reduced fish and invertebrate stocks and harmed vulnerable species (Piroddi et al. 2020);
trawling destroyed seabed integrity (Eigaard et al. 2017); eutrophication caused harmful algal blooms
(Tsikoti & Genitsaris 2021); pollution increased heavy metal levels, intoxicating marine organisms
(Tornero & Hanke 2016); oil spills destroyed coastal habitats (Castege et al. 2014); climate change
shifted species distribution towards colder waters and enabled biological invasions of species from
warmer waters (Chust et al. 2024).

As the causes of biodiversity loss in European marine ecosystems were identified, legislation and
policies to counteract the losses were implemented. For example, the Common Fisheries Policy
introduces fishing quotas (Froese et al. 2018); deep ocean trawling is now forbidden in some deep-
sea ecosystems (Regulation 2016/2336); the Urban Waste Water Treatment Directive fostered
significant reductions of nitrogen pollution of coastal and marine ecosystems (Directive 2024/3019),
while the Descriptor 8 of the MSFD aims to reduce eutrophication of coastal and marine waters
(Grizzetti et al. 2021); the Erika legislative packages increase safety regulations for oil tankers
(Regulation 530/2012), resulting in a reduction of oil spills; the European Regulation on Invasive Alien
Species sets measures to be taken against invasive species (Regulation 1143/2014); and Marine
Protected Areas, which cover more than 12% of the marine EU waters (EEA 2020), limit some of the
most prejudicial human activities. Although the results of these policies are sometimes insufficient
(Aminian-Biquet et al. 2024; Kleitou et al. 2021), some positive effects on biodiversity are already
apparent at local and regional scale (Jacquemont et al. 2022). In sum, there are two opposing
processes acting on coastal and marine biodiversity: losses caused by human activities and gains
caused by conservation efforts.

To ensure the future of coastal and marine ecosystems, we need to assess long-term trends and the
current status of coastal and marine biodiversity, including their drivers. By assessing biodiversity
trends, we can better understand if biodiversity loss is worsening, stagnant or improving, and if
conservation policies are effective. Finally, we also want to determine if the causes of biodiversity loss
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and the effectiveness of conservation policies are similar across European regions and for different
groups of organisms. To that end, here we assess the biodiversity trends at continental scale and at
regional scale, separately for six biotic groups.

2.1.3 Methodology

We created six datasets of time series for European coastal and marine biotic groups: birds, fish,
invertebrates, macroalgae, phytoplankton and zooplankton. The time series were extracted from
open access databases: BioTIME (version 1.0) (Dornelas et al. 2018), COPEPOD (O'Brien 2014), the
European Marine Observation and Data Network (EMODnet) (Beja et al. 2024), REPHY (REPHY 2023),
FishGlob (Maureaud et al. 2025) and CPR Survey (Vezzulli & Reid 2003); and a previous study analysing
multidecadal biodiversity trends in European marine, freshwater and terrestrial ecosystems (Pilotto
et al. 2020). Each of the included time series met the following criteria: (1) had a minimum number of
eight sampling years (not necessarily consecutive) with one single annual observation (based on a
single sampling event for every biotic group, except for phytoplankton); (2) included abundance
estimates, and (3) had consistent sampling site, sampling period (any three consecutive months),
protocol and taxonomic resolution over the entire observation period (Table 1.1).

In the case of phytoplankton time series, only years with at least eight sampled months and without
gaps longer than three months were considered to avoid the effect of seasonality and blooms. The
abundance values of the monthly samples were used to calculate the yearly geometric mean, which
was later considered as the yearly abundance estimate. For every biotic group, in the case of months
with several samples, the first sample was used.

Table 1.1. Number of time series per biotic group and per data source meeting the criteria

Birds Fish Invertebrates Macroalgae Phytoplankton Zooplankton ' TOTAL

BioTIME 3 157 28 2 190
1.0

COPEPOD 0
Pilotto et 2 1 8 1
al. 2020

EMODnet 291 413 1154 14 116 24 2012
REPHY 89 89
FishGlob 5 5
CPR 26 26 52
Survey

Total 293 422 1319 42 233 50 2359
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¢)
The final dataset comprises 2,359 time series, including 552,475 observations of 4,718 coastal and
marine taxa in 2,246 different sites (Fig. 1.1). Among these sites 25 are in the Adriatic Sea, two in the
Aegean-Levantine Sea, 471 in the Baltic Sea, 54 in the Bay of Biscay and the Iberian Coast, 9 in the
Black Sea, 127 in the Celtic Seas, 1,515 in the Greater North Sea, 32 in the Western Mediterranean
Sea and one in the White Sea. The time series span from 1956 to 2022 with a mean total duration of

18 years and a mean of 15 sampled years (minimum 8, maximum 59 sampled years).
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Figure 1.1. Location of each time series (sites) and number of sampled years for each of them, by biotic

group.
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Taxa names and taxa identification numbers were harmonized using the World Register of Marine
Species (WoRMS) (WoRMS Editorial Board 2025). To describe changes in the communities we
calculated taxonomic richness, Shannon’s diversity and total abundance for each time series and year.
Total abundance was logio-transformed prior to analysis to reduce skewness.

We used Generalized Least Squares (GLS) models to evaluate time series-level temporal trends in
richness, diversity and abundance. For each time series and metric, we fitted a GLS model with year
as a continuous fixed effect, while accounting for temporal autocorrelation. The percentage of change
per year was calculated by back-transforming model estimates.

To detect differences in the trends across geographical regions, the time series were grouped into five
regions (Atlantic, Arctic, Baltic, Black Sea and Mediterranean). The resulting slopes of the GLS models
were meta-analysed, including their corresponding sampling variances, the region as moderator and
the site and data source as random effects to account for site-level variation and differences in
sampling methodologies. The models were fitted via restricted maximum likelihood.

2.1.4 Results and discussion
Most of the time series do not show significant changes over time in any biotic group. Overall, more
time series show positive trends in each biodiversity metric than negative, but this is not consistent
across biotic groups. For example, there are twice as many time series with a negative trend than
positive for fish, while there are almost three times more positive than negative trend series for
invertebrates (Table 1.2).

Table 1.2. Number and percentage (in brackets) of time series showing significantly positive or
negative trends in richness, diversity (Shannon diversity index) and abundance (transformed by the
common logarithm), by biotic group. The remaining number and percentage of time series
corresponds to the ones that did not significantly change overtime.

Biotic group n (time series) Trend Richness Shannon Abundance
Diversity (log1o)
Birds 293 Positive 95 (32%) 72 (25%) 65 (22%)
Negative 14 (5%) 15 (5%) 37 (13%)
Fish 422 Positive 15 (4%) 16 (4%) 13 (3%)
Negative 40 (9%) 44 (10%) 38 (9%)
Invertebrates 1319 Positive 252 (19%) 190 (14%) 290 (22%)
Negative 95 (7%) 85 (6%) 109 (8%)
Macroalgae 42 Positive 2 (5%) 5(12%) 8 (19%)
Negative 9 (21%) 4 (10%) 17 (40%)
Phytoplankton 233 Positive 73 (31%) 17 (7%) 36 (15%)
Negative 33 (14%) 17 (7%) 15 (6%)
Zooplankton 50 Positive 29 (58%) 7 (16%) 2 (4%)
Negative 3 (6%) 8 (14%) 15 (30%)
Total 2359 Positive 466 (20%) 307 (13%) 394 (17%)
Negative 194 (8%) 173 (7%) 231 (10%)
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The frequency distributions of the temporal trends (Fig. 1.2) show that most trends follow a normal
distribution centred around zero, in particular the diversity and the abundance trends. This is, in
most time series the biodiversity metrics do not change across time, and if they do, the change is
relatively small.

Richness Diversity

100 50 0 50 100 -0 5 0 5 10

Abundance

Birds
@ Fish
@ Invertebrates
@ Macroalgae
@ Phytoplankton
@ Zooplankton

-20 -10 0 10 20

Figure 1.2. Frequency distribution of the change in richness, diversity (Shannon diversity index) and
abundance (transformed by the common logarithm) for each biotic group. The horizontal axis shows
the percentage of change, from -100 to 100 for richness, -10 to 10 for diversity and -20 to 20 for
abundance (-100 meaning complete decline, 0 no change and 100 a value twice as high as the initial
value) during the complete sampled period.

The regional meta-analyses show several significant trends across biodiversity metrics and biotic
groups (Table 1.3), most of them positive. The clearest regional trends are the increases in bird
richness and diversity in the Baltic, the fish abundance decline in the Atlantic, and the increase in
invertebrate richness, diversity and abundance in the Baltic. Some indicators show different trends for
the same group in different regions: fish abundance (negative trend in the Atlantic but positive in the
Mediterranean); and zooplankton abundance (negative trend in the Atlantic and Baltic but positive in
the Black Sea).

10
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Table 1.3. Regions showing a significant trend, by biotic group. Metrics and regions not included do
not show any significant trend. There were no significant trends for macroalgae. In bold the trends
with more than 30 time series. n indicates the total number of time series for the biotic group in the

region.
Metric Region n (time series)  Trend
Birds Richness Atlantic 2 Positive
Baltic 291 Positive
Diversity Baltic 291 Positive
Fish Abundance Atlantic 395 Negative
Mediterranean 27 Positive
Invertebrates Richness Baltic 166 Positive
Diversity Baltic 166 Positive
Mediterranean 11 Positive
Abundance Baltic 166 Positive
Phytoplankton Diversity Mediterranean 24 Negative
Abundance Mediterranean 24 Positive
Zooplankton Richness Baltic 14 Positive
Diversity Baltic 14 Positive
Black Sea 1 Positive
Abundance Atlantic 30 Negative
Baltic 14 Negative
Black Sea 1 Positive

These results can be summarized as follows: first, there is a high variability in data coverage that limits
the scope of this analysis, and second, the biodiversity trends mostly show stability in the communities
although there are some differences across biotic groups and regions.

The data coverage is highly variable geographically (more than half of the sites are in the Greater North
Sea) and biologically (invertebrates represent more than half of the time series analysed). This limits
the reliability of the comparisons between regions or groups and hinders the interpretation of the
results.

11
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Accordingly, the higher number of time series for the North Sea and the Baltic Sea make the observed
stable trends of biodiversity metrics more reliable compared to the trends for other regions, which
are less supported by a sufficient number of time series. Moreover, differences in regional biodiversity
trends are commonly a result of differences among regional drivers (e.g. negative anthropic pressures
or positive effects of conservation actions). Accordingly, up-scaling our results to continental scale
may result in wrong conclusions.

The generally stable biodiversity trends indicate that no widespread loss of biodiversity was detected,
but there are some differences between groups and regions. As the reliability of the results is heavily
dependent on the number of time series analysed, we will limit the discussion to biotic groups with
more data (i.e. invertebrates, fish, phytoplankton and birds).

On the one hand, for invertebrates and birds there are more time series following positive trends, and
the significant regional trends (in the Baltic) are also positive. This can indicate that the conservation
policies adopted in the Baltic are effective (Cano-Barbacil et al. 2025; Andersen et al. 2017; Skold et
al. 2025).

On the other hand, for fish there are more time series following negative trends, and the significant
regional trends are negative in the Atlantic but positive in the Mediterranean. The fishing pressure is
still high in the Atlantic (Froese et al. 2018), and its effects could be worse for the most common
species (as richness and diversity trends are stable). The positive trend in the Mediterranean is likely
observed because most of the time series analysed in the region (18 out of 27 time series) are from
an older time period (between 1956 and 1971) when the anthropic pressures were not as intense
(Fiorentino & Vitale 2021).

For the phytoplankton the results are mixed, and there is a low number of time series in the only
region with significant trends (the Mediterranean). Some of the taxonomical groups within the
phytoplankton community can react positively to eutrophication and water warming (Suikkanen et al.
2013), while others could be declining, explaining the increases in abundance but loss of diversity.

Finally, in this section we presented a descriptive analysis of the coastal and marine biodiversity trends
based on available public time series data. Overall, we did not detect a widespread biodiversity loss in
European coastal and marine communities. However, we caution overinterpretation of this result as
our analyses are biased by severe biodiversity time series data gaps regarding both biotic groups and
regions. Moreover, compared to linear models, non-linear models may provide more nuanced insights
into biodiversity trends, as they can capture fluctuations in trends over time (for example, a decrease
followed by an increase). Thus, additional data and analyses are required to provide more robust
trends and detailed trajectories as well as correlations of biodiversity trends with trends of their
drivers.

12
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2.2 Habitat suitability modelling

2.2.1 Objective
Based on available large-scale spatial data, we model habitat suitability requirements of coastal and
marine species protected under Habitat and Bird Directive legislation to understand their present and
predict their future distribution using ensemble models.

2.2.2 Background

The European Union’s Habitats Directive and Birds Directive (Council directive 92/43/EEC; Directive
2009/147/EC) are essential frameworks in the battle against biodiversity loss. They aim to preserve
characteristic habitats with their species of interest. Annexes Il and IV of the Habitats Directive lists
marine mammals, including harbour porpoises and bottlenose dolphins, that require strict protection.
To support effective management and conservation under these directives it is essential to
understand both the current distribution of these species and how their habitats may shift in the
future under climate change.

Habitat suitability models (HSMs) are commonly used to understand species habitat requirements and
distributions. HSMs fit the statistical relationship between observed species occurrences and
environmental conditions, allowing predictions of where relative suitable habitat is located across a
study area. Numerous modelling algorithms and implementations exist, each with their own strengths
and weaknesses. Ensemble models combine these individual models, leveraging their differences, to
obtain more robust predictions.

Public biodiversity databases such as (Eur)OBIS and GBIF (EurOBIS; GBIF 2025) provide extensive
records of species occurrences. Nonetheless, these data are often collected with varying methods and
for specific sampling/research purposes, resulting in data being unevenly distributed in space and
time. Comprehensive environmental datasets are openly available from infrastructures such as
EMODnet (Beja et al. 2024) (e.g. bathymetry) and the Copernicus Marine Environment Monitoring
Service (CMEMS) (Copernicus Marine Service 2025) (e.g. temperature, salinity, productivity) and
complementing the biological observations. These combined resources make it possible to assess how
environmental drivers shape species distributions today and to project potential changes under future
climate scenarios.

2.2.3 Methodology
Two modelling approaches are implemented to generate habitat suitability predictions with two
temporal scopes: (1) monthly predictions to characterise seasonal dynamics; and (2) decadal
predictions to assess long-term trends under Shared Socioeconomic Pathways (SSP, Riahi et al. 2017)
climate scenarios (2020-2100).

The study focused on regions I, lll and IV of the OSPAR Maritime Area, which include the Greater
North Sea, the Celtic Seas, and the Bay of Biscay and Iberian Coast. These regions were chosen because
of the availability of both biological and environmental data required for the modelling approach, and
because they cover key habitats for many of the species protected under the Habitats Directives.

13
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Biological data - Species occurrence data were obtained from EurOBIS, the European node of the
Ocean Biodiversity Information System, which provides open-access records of marine species
occurrences. We focused on four marine mammal species of conservation interest: harbour porpoise
(Phocoena phocoena), harbour seal (Phoca vitulina), common dolphin (Delphinus delphis), and
bottlenose dolphin (Tursiops truncatus). These were selected from the species listed in Annex Il and
IV of the Habitats Directive (f Council Directive 92/43/EEC), with additional filtering to ensure sufficient
data availability. Records were downloaded from EurOBIS for the years 2000-2019, and quality control
steps were applied to remove strandings, museum specimens, duplicates, and records outside the
study area. To reduce bias from oversampled locations or periods, records were thinned so that only
one presence per grid cell and time step (month or decade) remained.

Because species occurrence data from public databases are often biased towards areas of higher
sampling effort, we applied a background sampling approach that accounts for this. All available
records of marine mammals were used to estimate sampling intensity, and background points were
drawn with higher probability in areas of higher effort.

Environmental data - Sea surface temperature, salinity, and net primary productivity were obtained
from the CMEMS (Copernicus Marine Service Information; Global ocean low and mid trophic levels
biomass content hindcast) while bathymetry was downloaded from EMODnet. Environmental data
were collected at a spatial resolution of 0.083 degrees. To comply with the temporal resolution of the
other environmental variables, net primary productivity was aggregated into monthly averages, and
both monthly and decadal climatologies were created. For the decadal predictions, environmental
layers were downloaded from Bio-ORACLE (Tyberghein et al. 2012; Assis et al. 2024). The present data
was downloaded for decades 2000-2010 and 2010-2020. The future projections were downloaded for
decades between 2020-2030 and 2090-2100 under a range of climate change scenarios (SSP1-1.9,
SSP2-4.5 and SSP5-8.5) (Riahi et al. 2017).

Modelling approach - Habitat suitability modelling was carried out using an ensemble approach,
combining several different algorithms that are commonly used, including Random Forest,
Multivariate Adaptive Regression Splines (MARS), Maximum Entropy (MaxEnt), Extreme Gradient
Boosting (XGBoost) and Generalized Additive Models (GAMs). Models were trained using subsets of
the biological and environmental data and evaluated using cross-validation to estimate their
performance in the absence of a true validation test set.

After training, the final ensemble models were fitted on all available data and used to generate habitat
suitability maps across the study area. Predictions were made for both monthly and decadal
climatologies of the present period, as well as for future decades under the different SSP climate
scenarios. Habitat suitability was expressed on a relative scale from 0 to 1, indicating areas that are
less or more suitable for the species.
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2.2.4 Results and discussion

2.2.4.1 Species occurrences across the study area

The occurrence data for harbour porpoises (Appendix A, Figure Al) shows clear variation across
months, both in terms of spatial coverage and intensity. Some months and areas have far more
records than others. This reflects well-known spatial and temporal biases arising from using public
datasets originally collected for specific purposes, and not necessarily in a harmonised manner across
the spatial and temporal scales covered for these models: for example, there is more sampling effort
along shipping routes and close to the coast. When records are aggregated to the decadal scale (as
described in section 2.2.3), these differences even out to some degree, reducing the impact of
temporal gaps for certain areas. Nevertheless, some regions remain overrepresented to others
considering their sampling effort.

Occurrences of harbour seals in the datasets used are mostly restricted to coastal areas around the
North Sea, with few records in central parts of the North Sea (Appendix A, Figure A2). Occurrences of
common dolphins covered predominantly the Iberian coast and the Bay of Biscay, extending into the
Celtic Seas during summer, and with very scarce records present in the North Sea (Appendix A, Figure
A3). Bottlenose dolphin occurrences largely resemble those of common dolphins, with very limited
records in the North Sea (Appendix A, Figure A4).

Public databases such as (Eur)OBIS include many datasets collected over different time spans, each
with their own methodologies and sampling designs. This richness is valuable, but it also introduces
inconsistencies when multiple data sources are used for a study. The approach taken here was to
simplify these records to a grid-level presence, which inevitably loses detail but makes it possible to
combine the available data into a format usable for large-scale modelling.

2.2.4.2 Model evaluation
Model evaluation suggests that the ensemble approach was able to distinguish presence from
background reasonably well based on the Continuous Boyce Index and ROC AUC under cross-
validation. The metrics provide an indication of reliability, but it is important to stress that we lack an
independent validation dataset. When using these performance metrics with presence-only data, they
depend on the amount of background points and the method used to generate them.

2.2.4.3 Monthly habitat suitability predictions
Monthly habitat suitability predictions are able to inform about habitat suitability and possible usage
by a species in the short-term, providing insights valuable to inform human activities and marine
spatial planning in current scales. The monthly prediction maps show changes in habitat suitability
throughout the year for all four species.

For harbour porpoises (Figure 2.1), the Celtic Seas and wider North Sea are generally predicted as
suitable throughout the year, with highest habitat suitability during the winter predicted in the
southern and more coastal parts of the North Sea, matching well with the occurrences of the species
(Appendix A, Figure Al).
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Figure 2.1. Harbour porpoise predicted monthly habitat suitability in OSPAR regions II-IV.

Predicted habitat suitability of harbour seal (Figure 2.2) shows highest values restricted to coastal
areas, with few obvious seasonal changes, such as higher predicted habitat suitability in the central
North Sea during the summer months. Nevertheless, these changes in summer habitat suitability may
be largely influenced by some limited occurrences in the dataset further off-shore in central parts of
the North Sea (Appendix A, Figure A2) and should be interpreted with caution.
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Figure 2.2. Harbour seal predicted monthly habitat suitability in OSPAR regions II-IV.

For common dolphins (Figure 2.3), high habitat suitability is predicted along the Iberian coast and the
Bay of Biscay throughout the year. During spring and summer, predicted suitable habitat extends
further north and across the North Sea, despite occurrences in the dataset being scarce in this area
during the summer (Appendix A, Figure A3). Northern records seem to strongly influence the monthly
models showing a much higher suitability in these periods.
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Figure 2.3. Common dolphin predicted monthly habitat suitability in OSPAR regions II-IV.

For bottlenose dolphins (Figure 2.4), predicted habitat suitability largely resembles that of common
dolphin, with high values along the Iberian coast and the Bay of Biscay throughout the year and
suitable habitat extending into the North Sea during the summer. In the same way as with common
dolphin, sensitivity to the records in the north (Appendix A, Figure A4) coming out of the incidental
sightings dataset may be influencing the predictions.
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Figure 2.4. Bottlenose dolphin predicted monthly habitat suitability in OSPAR regions II-1V.

2.2.4.4 Decadal habitat suitability predictions for current and future climate scenarios
While monthly habitat suitability predictions can inform about habitat suitability and possible usage
by a species in the short-term, predictions aggregated across longer scales (such as decadal) allow to
better understand habitat suitability for a species linked to a future changing climate.

Under present conditions, highest habitat suitability for harbour porpoise is predicted across the
North Sea, the English Channel and the Celtic Sea (Appendix A, Figure A5), matching well with the
species occurrence records (Appendix A, Figure Al). Future projections under SSP climate scenarios
(Figure 2.5) suggest an overall reduction in suitable habitats across decades and under all future SSP
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scenarios, possibly linked to increasing sea surface temperatures. The strongest declines are predicted
under the SSP5-8.5 scenario, in which the currently highly suitable areas in the southern North Sea
(Appendix A, Figure A5) would suffer a large reduction in habitat suitability (Figure 2.5).
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Figure 2.5. Harbour porpoise habitat suitability differences between current decadal predictions and
future decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle) and 585
(bottom) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right). Predicted
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habitat suitability for decade 2010-2019 and for all future scenarios are available in Appendix A, Figure
A5 and Figure A9, respectively.
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Figure 2.6. Harbour seal habitat suitability differences between current decadal predictions and future
decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle row) and 585
(bottom row) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right).
Predicted habitat suitability for decade 2010-2019 and for all future scenarios are available in
Appendix A, Figure A6 and Figure A10, respectively.

21



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling

MARCO-BOLO

STRENGTHENING BIODIVERSITY OBSERVATION IN SUPPORT OF DECISION MAKING

Predicted habitat suitability for harbour seal during the last two decades (Appendix A, Figure A6) is
also highest in the southern North Sea, matching well with the species occurrences (Appendix A, Figure
A2). In the coming decades, predicted habitat suitability for harbour seals is also expected to decrease
across all SSP scenarios in the Southern North Sea, with most marked reductions under the SSP5-8.5
scenario (Figure 2.6). Nevertheless, habitat suitability seems to be predicted to increase in previously
less suitable habitats in the eastern North Sea around Denmark (Figure 2.6), likely due to a change to
more suitable environmental conditions for the species around that area.

Predicted habitat suitability during the last two decades for common dolphin and bottlenose dolphin
was highest around the Iberian coast and the Bay of Biscay (Appendix A, Figure A7 and Figure A8,
respectively). Future projections suggest a marked reduction in habitat suitability around the Iberian
coast and the Bay of Biscay for both species (Figure 2.7 and 2.8). Surprisingly, habitat suitability is
predicted to increase for common dolphins in some areas further north (i.e. North Sea), which
currently has a very low habitat suitability for this species (Appendix A, Figure A7). The changes are
even more striking for bottlenose dolphins, with positive changes in habitat suitability in the North
Sea and offshore areas of the Atlantic. The changes for both species seem to reflect temperature-
driven changes under the different future SSP scenarios.

Overall, habitat suitability for all species modelled (harbour porpoise, harbour seal, common dolphin,
and bottlenose dolphin) appears to decrease across all the future SSP scenarios used, with currently
suitable areas where these species occur being impacted in the future. Despite some increases in
predicted habitat suitability in some specific areas in the future (e.g. for common and bottlenose
dolphins), the predictions of these models are only based on environmental conditions and ignore any
biological links. Biological variables, such as the associated changes in food availability in new and
completely different ecological areas, or the impact on reproductive grounds, are key to
understanding the future real impact on the populations. For example, habitat shifts favouring off-
shore or open ocean environments, as opposed to coastal areas currently used by the species, may
translate into changes in food availability which may prevent the actual use of the predicted suitable
habitat in the future, for example. Thus, the outcomes of these models should be interpreted with
caution, as they do not incorporate the full complexity of biological systems and therefore are limited
in the predictions that they can provide.

These results demonstrate both the potential and the limitations of habitat suitability models based
on openly available data. Biases in sampling, differences between datasets, and the aggregation of
information to a monthly or decadal resolution all reduce precision. Environmental variables such as
temperature or net primary productivity serve as proxies for complex ecological processes. Adding the
uncertainty of environmental values over these future climate scenarios, the maps should be viewed
as broad indications of trends rather than precise predictions of where species will be found. At the
same time, this modelling exercise highlights the value of public biodiversity databases. The ability to
build these data-driven models depends on the availability of quality datasets. The more consistent
and comprehensive these records become, the more reliable the predictions will be.
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Figure 2.7. Common dolphin habitat suitability differences between current decadal predictions and
future decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle row) and
585 (bottom row) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right).
Predicted habitat suitability for decade 2010-2019 and for all future scenarios are available in
Appendix A, Figure A7 and Figure A11, respectively.

23



D5.1 Biodiversity trends, underlying drivers and essential observations for predictive modelling

MARCO-BOLO

STRENGTHENING BIODIVERSITY OBSERVATION IN SUPPORT OF DECISION MAKING

suitability
1.0

Figure 2.8 Bottlenose dolphin habitat suitability differences between current decadal predictions and
future decadal predictions under climate scenarios SSP119 (top row panels), 245 (middle row) and
585 (bottom row) for decades 2020-2030 (left panels), 2050-2060 (centre) and 2090-2100 (right).
Predicted habitat suitability for decade 2010-2019 and for all future scenarios are available in
Appendix A, Figure A8 and Figure A12, respectively.
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2.3 Determining causal relationships

2.3.1 Objective
The objective of this section is to combine high resolution oceanic numerical modelling with 30-years
of atmospheric, oceanographic and ecological data at a coastal LTER site to derive causal relationships
between the external forcing and the biological response.

Additionally, we aim to develop Al predicting tools which, in the future, will allow targeting specific
biological components of the ecosystems by integrating the outcome of the analysis of local genomic
data from the NEREA Augmented Observatory (WP2). Once tuned and adapted, these Al tools can
serve as a downscaling toolbox for future projections.

2.3.2 Background

A recent study on nutrient dynamics in the Gulf of Naples (GoN) at the Long-Term Ecological Research
MareChiara site (LTER-MC) (Romillac et al., 2023) provided a detailed analysis of how anthropogenic
pressures and climate variability shape nutrient input and phytoplankton biomass. Based on over
three decades of data, it highlighted the interplay between terrestrial nutrient inputs and atmospheric
forcing. Further, Kokoszka et al. (2023) observed a long-term shallowing of the mixed layer depth and
linked it to changes in wind patterns and freshwater input, making it a key indicator of system
responses to climatic changes. Based on these two publications, we designed and run a study to
explore the ecosystem evolution under future climate scenarios.
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Figure 3.1. The Gulf of Naples, in the Western Mediterranean Sea. Back cross: LTER-MC sampling site;
blue cross: Sarno’s river mouth.
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Figure 3.1 illustrates the interplay between terrestrial influences, atmospheric forcing, and circulation
in shaping coastal dynamics and primary productivity in the Gulf of Naples. Key factors considered
include freshwater inputs, quantified using proxies such as freshwater content, runoff, and
precipitation. Freshwater inflows, particularly from rivers, generate plumes and filaments (lermano et
al. 2012), which are transported by the wind-driven circulation, with stratification controlling their
dilution. Vertical mixing disperses these water parcels, alternating with periods when local conditions
are shaped by off-shore circulation. Our first aim is to determine whether this dynamic interplay,
which governs nutrient distribution and coastal primary production, can be effectively hindcasted or
forecasted using a limited set of variables.

Using a hybrid statistical approach that combines mechanistic and machine learning models, we
integrate long-term data from in situ observations with reanalysis data. Since chlorophyll-a is a key
proxy for phytoplankton productivity (Falkowski & Kiefer 1985) and, indirectly, food web responses,
we analyse its variations in relation to freshwater inputs and stratification as indicators of the Gulf of
Naples’s physical and geochemical dynamics. Leveraging long-term monitoring data, we apply
Random Forest algorithms to assess these relationships. The preliminary dynamical analysis relies on
the most complete dataset available, while a reduced set of key variables is successively used to set
up our predictive model, ensuring both comprehensive analysis and practical forecasting.

We aim, first, to produce a mechanistic understanding of the response of the coastal ecosystem to
external forcing and, second, to estimate the possible ecosystem responses to climate change.

2.3.3 Methodology

The LTER-MC site (14.25°E, 40.80°N) is located in the Gulf of Naples over a depth of ~75 m (Fig. 3.1).
It has been sampled since January 1984, but to ensure standardised data, we focus on the period from
January 2001 to February 2020, when chlorophyll-a and nutrient sampling was conducted regularly
on a weekly basis. Hourly data for horizontal wind speed components and precipitation was retrieved
from VHR-REA_IT Copernicus ERAS dataset (Raffa et al. 2021). As a measurement of stratification, the
Mixed Layer Depth (MLD) was calculated based on Ekman dynamics using wind data. Freshwater
Runoff was estimated as the freshwater index FW (Kokoszka et al. 2023), calculated using the averaged
river discharge rates r (m3 s-1) extracted from the European Flood Awareness System provided by
Copernicus (Wetterhall 2019). We use high-quality flagged data for three groups of variables: (i)
chlorophyll-a (CHL), (ii) physical variables, including temperature (T), salinity (S), precipitation (P), wind
velocity (|U|), wind direction (dir), mixed layer depth (MLD), and freshwater runoff (FW), and (iii)
biogeochemical variables, including dissolved oxygen (DO), ammonium (NH,), nitrate (NOs), nitrite
(NO,), dissolved inorganic nitrogen (DIN), phosphate (PO,), and silicate (Si). We will refer to this
ensemble of data as the “Full dataset”.

For the 2020-2070 period, no chlorophyll or biogeochemical estimations can be obtained. We
retrieved the wind and precipitation variables described above from the VHR-PRO-IT (Very High-
Resolution PROjections for ITaly) (Raffa et al. 2023) climate projections based on the IPCC
Representative Concentration Pathways RCP4.5 and RCP8.5 (IPCC 2014) over the Italian territory. The
MLD was calculated based on the wind variables. The WF was calculated using the estimated
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precipitation on the Bay of Naples, and on the Bay and the catchment area to assess inputs from river
discharge. This resulted in four datasets, two per RCP scenario, half considering the catchment area
and half not considering the catchment area. We refer to these four datasets as the “Projection
datasets”.

We applied a Random Forest (RF) regression (Breiman 2001) to the “Full dataset” and ran a Feature
Importance Analysis to determine the main predictor of the chlorophyll-a. RF is a supervised Machine
Learning algorithm based on decision trees that performs pattern recognition for classification and
regression tasks. “Training” is the learning phase of the algorithm, realized on 67% of available data
the RF classifies a set of variables to predict a target. “Validation” is performed with the 33% of data
remaining: this fraction is passed to the RF that produces a prediction that we can compare to the
target fraction that was excluded from the learning. The importance of predictors in the fitting is
determined as the Gini importance in % and the Pearson coefficient is used to evaluate the strength
of the correlations. We used the “Full dataset” with the CHL as the target and the physical and
biogeochemical variables as predictors.

Based on our finding that salinity is the strongest predictor of chlorophyll levels, we introduce a
parameterization that links salinity to two key factors: (i) its relationship to water column stratification
and (ii) cumulative freshwater discharge. We developed a minimal machine learning algorithm that
uses climate projections by modelling Salinity and Chlorophyll dynamics using a minimal setup of
physical parameters. We build on previously established dependencies: chlorophyll response can be
predicted from salinity changes, and salinity changes are driven by freshwater inputs and
stratification. The process involves two steps: (a) predicting salinity variations from physical
parameters, and (b) modelling chlorophyll response based on salinity changes. We test the use of a
minimal set of physical parameters through various simplified trainings—starting with best estimates
for S and CHL, then progressively using less accurate ones to assess model degradation.

Finally, we estimate the chlorophyll response using climate projections until 2070. Four RF trainings
are generated (two for RCP4.5 and two for RCP8.5, two “with catchment”, identified in the following
as *) and two “without catchment”, identified as **) using the “Projection datasets”. To ensure
consistency between training and projections, the model training is performed using precipitation
data collected between 2001 and 2020, while the projections are generated using the estimated
precipitation based on the climate projections for the period between 2001 and 2070. We fit a linear
relationship between yearly variations in salinity and chlorophyll to quantify the primary production
response to salinity changes, providing a basis for estimating annual carbon uptake in the marine
ecosystem. This approach allows quantification of CO, removal from the atmosphere and Dissolved
Inorganic Carbon uptake based on salinity-driven chlorophyll variations. For each distinct training the
average slope is calculated between the two RCPs.
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2.3.4 Results and discussion
2.3.4.1 Chlorophyll-a predictors

Feature importance analysis (Fig. 3.2a) of the predictor for log-transformed chlorophyll-a
concentrations, built using the “Full dataset”, identifies surface salinity as the main predictor,
contributing over 35% to the model’s explanatory power, followed by nitrate, phosphate, and MLD
(~¥10%). The Pearson correlation coefficient (0.751) indicates a strong alignment between predictions
and observations, capturing overall chlorophyll trends despite some discrepancies at extreme values.

The time series comparison confirms the model’s ability to reproduce seasonal and interannual
chlorophyll fluctuations, closely matching observed peaks and troughs, though certain events (e.g.,
springs 2012 and 2013) remain challenging to replicate. The annual averaged series further
demonstrates the model’s robustness over nearly two decades, successfully capturing broad temporal
patterns, with deviations likely linked to extreme events or episodic nutrient inputs beyond the

resolution of weekly predictors.
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Figure 3.2. Random Forest Model Performance for Chlorophyll-a Prediction in the Gulf of Naples.
Training on the historical chlorophyll-a data (obs.) using various environmental predictors. Importance
of each predictor variable is indicated with STD error bars (top right), and time series comparisons
(bottom left: weekly, arbitrarily shown between 2010-2015; bottom right: inter-annual) illustrate
model accuracy and variability. Note the gap 2005-2006 on the inter-annual due to lack of BGC

observations in the merged time series.
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2.3.4.2 Linkage between salinity and physical factors

The simplified model accurately predicts surface salinity, with robustness tested across different
training levels, from the best estimator to more simplified approaches (S* and S**, in Figure 3.3).
Despite relying on simplified salinity predictions from S* and S**, the RF model still maintains a
significant correlation with observations and captures key patterns in the time series (Figure 3.4).
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Figure 3.3. Weekly (left) and inter-annual series (right) of Mixed Layer Depth (top) and surface salinity
(bottom) in the Gulf of Naples. a,b: Comparison between the estimated Ekman layer and measured
Mixed Layer Depth (MLD, thick grey). Two versions are shown: LE (black line) uses best available in
situ observations (vertical stratification) together with wind data products, while LE* (pink line) is a
simplified version relying on averaged monthly vertical profiles to replace direct observations. c,d:
Surface Salinity Parameterizations. Observations (thick grey) are compared with two parametrization
outputs: SLE (black, based on LE), and SLE * (pink, based on LE*).
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Figure 3.4. Random Forest Model Performance for Salinity using simplified estimators. Training S* and
S** use simplified predictors to assess model robustness under data-scarce conditions. Importance of
each predictor variable is indicated with STD error bars.
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2.3.4.3 Future projections

The projections indicate declining trends in precipitation and wind, which, in our models, result in
increasing salinity and a corresponding decrease in chlorophyll levels. Both RCP4.5 and RCP8.5
scenarios show a declining trend in wind speed from 2020 to 2070 (RCP4.5: -0.0018 m s™'/year; RCP8.5:
-0.0047 m s7'/year; Fig. 3.5). The decline is steeper and significant under RCP8.5 (pv = 0.0069), with a
visible shift beyond 2045. Similarly, precipitation decreases in both scenarios (Fig. 3.5b), though only
RCP4.5 shows a statistically significant trend (RCP4.5: -0.0727 mm h™"/year, p = 0.0428; RCP8.5: -
0.0644 mm h™"/year, pv = 0.1247). Salinity and chlorophyll trends vary depending on the RF training
method, distinguishing between runoff-influenced freshwater (FP, Figure 3.5c,d) and direct
precipitation without catchment (p, Figure 3.5¢,f).
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Figure 3.5. Projections of (a) wind and (b) precipitation, under RCP4.5 and RCP8.5 Scenarios (2020-
2070). Surface Salinity and Chlorophyll-a are obtained from projections in the training * (c-d), and in
the training ** (e-f). Linear trends are emphasized with metrics to assess their significance.
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Observed chlorophyll shows a distinct bimodal distribution, with a lower peak in autumn and a higher
peak in spring, when productivity increases. Both RF trainings capture this bimodality but yield
contrasting future projections depending on whether basin catchment effects are considered. With
basin catchment, under RCP4.5, bimodality weakens over time, particularly by the 2060s, as reduced
precipitation lowers runoff and nutrient supply. The spring peak diminishes, while the autumn peak
becomes more dominant, reflecting an overall decline in chlorophyll-a concentrations. Under RCP8.5,
this effect is comparable, leading to a near-monomodal distribution by 2060-2069. The combined
impact of reduced runoff and salinification under high emissions thus appears to severely constrain
chlorophyll-a production.

The observed variations from year to another, for all scenarios and training (Fig 3.6), show the negative
response of chlorophyll to salinity changes. Considering the basin catchment (Fig. 3.6a), a |ACHL| of
~0.35 mg m~3/year responds to a |AS| of 0.1 g kg™"/year. Without catchment (Fig. 3.6b), the response
is steeper, with a |ACHL| of ~0.50 mg m™3/year for the same salinity change, indicating greater
variability in systems lacking runoff buffering.
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Figure 3.6. Relationship between vyear-to-year changes in surface salinity and chlorophyll-a
concentrations, and associated CO, fluxes under different conversion scenarios. (a,b) Relationship
between interannual differences in salinity (AS) and chlorophyll-a concentrations (ACHL); (c,d) CO»
variations associated to subsequent primary production changes (APP), for three carbon conversion
factors (30, 50, and 80 mg C / mg CHL).
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2.3.4.4 Discussion

The emergence of salinity as a primary predictor of chlorophyll concentration in the Gulf of Naples
highlights the role of freshwater inflows and stratification as key modulators of primary productivity.

Our model suggests a progressive increase in salinity and a decline in chlorophyll, particularly in spring,
with uncertainties in autumn trends. As expected, land-based changes (e.g., precipitation, basin
catchment effects) exert a strong influence on coastal ecosystems. Building on Romillac et al. (2023),
we attribute salinity’s dominant role as a predictor primarily to nutrient loads carried by runoff, rather
than its impact on stratification. While high stratification can enhance phytoplankton accumulation by
reducing vertical mixing, light limitation is negligible at the LTER-MC site (75 m depth), even in winter.

The study also quantifies the yearly relationship between salinity and chlorophyll, enabling the
development of anindex to track primary production responses under climate projections. Our carbon
uptake scaling provides a first-order estimation but relies on general carbon conversion factors,
omitting phytoplankton adaptation corrections and assessing only temporary inorganic carbon
fixation, part of which may be exported beyond the photic zone. The impact of salinity variations on
phytoplankton accumulation could also lead to broader ecological shifts, influencing species
composition and community structure as less productive conditions favour different phytoplankton
assemblages and marine organisms.

Studies (e.g., Zhang et al., 2019) using the Soil and Water Assessment Tool (SWAT) demonstrate that
urbanizing watersheds experience increased runoff and peak flows due to reduced infiltration under
RCP4.5 and RCP8.5. This effect was not accounted for in our study, where we applied a constant
absorption rate of 27%. If absorption capacity declines, runoff buffering weakens, causing greater
variability in freshwater inputs that could aligh more directly with precipitation rates. Finally, even in
the case of little changes in annual mean precipitation, the expected increase of extreme precipitation
events, where rain is concentrated on short periods, may reduce the actual biomass accumulation
since the efficiency of nutrient uptake largely decreases in such short events.

The Random Forest approach demonstrates that salinity variations at a given point can be effectively
captured using freshwater runoff and stratification with a minimal set of input variables, independent
of in situ observations. This highlights the efficiency and robustness of simplified models in accurately
representing coastal dynamics. Nevertheless, we expect that the oceanic transport (i.e., the Gulf inner
circulation) can play a role as modulator of the impact of the river on the sampling site, given the
distance (about 20km) between the latter site and the river mouth. To improve understanding of
advection-driven salinity distribution a refined circulation index incorporating currents, eddies, and
lateral intrusions is needed (Kokoszka et al. 2023). Preliminary analyses implementing a numerical
model of the circulation of the Gulf (ROMS) show that changes of the inner circulation can impact the
transport of nutrients to the MC. Nevertheless, they do not improve the predictions of the machine
learning tool. Moreover, to further deepen the understanding of the causal relationships between
forcings and biological responses, we are now coupling the model for ocean physics with a
biogeochemical model (Darwin model, MIT), in synergy with the EU project Biocean5D.
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The use of RCPs provides a structured framework for exploring climate futures but also emphasizes
the need for continuous updates and intercomparison of new models (O’Neill et al. 2016).
Understanding these pathways supports their translation into Shared Socioeconomic Pathways (SSPs),
which guide regional adaptation strategies by anticipating ecological impacts on coastal systems like
the Gulf of Naples (e.g., Riahi et al. 2017). This study underscores the value of interdisciplinary data
integration, aligning the Gulf of Naples with broader efforts to refine climate scenario frameworks
(O’Neill et al. 2016). By advancing data-driven modelling approaches, it contributes to the
development of Digital Twin Ocean (DTO; Tzachor et al. 2023) initiatives that will finish by joining such
as the Digital Twin of the terrestrial water cycle, which leverages high-resolution Earth observations
to enhance climate impact assessments and ecosystem management.

This analysis underscores how freshwater inputs, shaped by land use and by the impact of climate
change on land, modulate coastal ecosystem responses under climate change. It also highlights the
importance of basin catchment modelling for improved coastal ecosystem assessments and
projections. In sum, long-term monitoring and interdisciplinary approaches are needed to enhance
knowledge of the functioning of ecosystems, hence to better manage them under future climate
scenarios.
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3. Conclusion

In this report we presented three studies dedicated to the identification of biodiversity trends and
their underlying drivers based on publicly available data. Moreover, we developed predictive models
to project biodiversity trends into the future. Additionally, to ensure the reproducibility of our
analyses, all our metadata will be accessible in the near future as part of Marco Bolo Work Package 1,
and virtual workflows to reproduce our analyses will be accessible via LifeWatch.

The first study shows overall stable trends for coastal and marine biodiversity across European regions
and biotic groups. Some positive trends are detected for specific groups (i.e. birds, invertebrates) and
regions (i.e. Baltic), although this cannot be generalized across all the data analysed.

The second study assesses the seasonal distribution of four marine mammal species on the West coast
of the European continent. Using decadal habitat suitability models, the distribution of the four
species is projected into future decades under different climate scenarios. The projections, specially
under the Shared Socioeconomic Pathway SP585, show a generalized reduction in suitable habitats
across species, particularly marked in coastal areas.

The third study uses long-term data to determine that freshwater inputs in the Bay of Naples drive
water salinity, which is the main predictor of chlorophyll-a in the bay. Using a machine learning
approach, a limited set of physical variables was sufficient to produce robust estimations of primary
production. Future climate projections show a decrease in rainfall that will lead to an increase in
salinity and consequentially to a reduction of chlorophyll-a.

In conclusion, temporal changes in biodiversity are driven by many interacting factors: some of those
factors are dependent on human activities, negatively (i.e. climate change, overfishing, pollution) or
positively (i.e. establishment of protected areas, habitat restoration). During the last decades,
biodiversity in coastal and marine European habitats has been stable, but with variations among sites.
Nevertheless, future climate projections (i.e. warmer waters and decreased rainfall) will translate into
a change in conditions for coastal and marine European biodiversity. At the same time, other anthropic
pressures can worsen the situation, but new legislation and policies can have beneficial effects.

The three studies presented here show the potential of publicly available data combined with
statistical modelling and machine learning techniques. Nevertheless, all three studies are subject to
strong data limitations, making extrapolations difficult: the data analysed is not homogeneously
distributed across regions and biotic groups, and the analyses are restricted to sites and species with
high quality datasets.

To produce better analyses and projections, we strongly recommend the open publication of existing
datasets not currently openly available and to encourage harmonisation of biodiversity monitoring
across the continent, as well as to invest in advanced machine learning methodologies. By
understanding the past and present trends and future projections of coastal and marine biodiversity,
we can guide conservation efforts to ensure healthy ecosystems for the next decades.
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Appendix A Additional maps
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Figure Al. Harbour porpoise occurrences aggregated per season for the period (2000-2019).
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Figure A2. Harbour seal seasonal presence points, aggregated for the period (2000-2019).
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Figure A3. Common dolphin seasonal presence points, aggregated for the period (2000-2019)
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Figure A4. Bottlenose dolphin seasonal presence points, aggregated for the period (2000-2019).
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Figure A5. Harbour porpoise decadal predictions for 2000-2009 decade (left) and 2010-2019 decade
(right).
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Figure A6. Harbour seal decadal predictions for 2000-2009 decade (left) and 2010-2019 decade (right).
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Figure A7. Common dolphin decadal predictions for 2000-2009 decade (left) and 2010-2019 decade
(right).
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Figure A8. Bottlenose dolphin decadal predictions for 2000-2009 decade (left) and 2010-2019
decade (right).
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A4 Decadal predictions future
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Figure A9. Harbour porpoise future decadal habitat suitability predictions under climate scenarios
SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100.
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Figure A10. Harbour seal future decadal habitat suitability predictions under climate scenarios
SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100.
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Figure A11. Common dolphin future decadal habitat suitability predictions under climate scenarios

SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100.
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Figure A12. Bottlenose dolphin future decadal habitat suitability predictions under climate scenarios
SSP119, 245 and 585 for decades 2020-2030, 2050-2060 and 2090-2100.
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Appendix B Ecological Interactions and Regime Shift Detection for

MareChiara Time Series
B1 Introduction

The primary goal of this research was to analyse the ecological interactions between various
biogeochemical parameters at Mare Chiara, with a focus on identifying the main drivers of
productivity in this region and understanding their dynamics over time.

Data for the analysis came from the LTER-MC research station in the Gulf of Naples, from 1984 to
2019. This biogeochemical time-series data was first filtered, cleaned and transformed, and
subsequently used to train several Random Forest prediction models to estimate the importance of
each parameter on chlorophyll production. Having identified the main drivers, the focus shifted to
the system’s dynamics. An algorithm was developed to detect regime shifts by analyzing variations
on the prediction performance of Random Forest models over time.

This report details the methods and results at each step of the analysis, along with a discussion on
their strengths and limitations.

B2 Datasets
Original Dataset

The original dataset was acquired in the LTER-MC research station in the Gulf of Naples. It includes a
time-series of biogeochemical measurements at 10 depths (0, -2, -5, -10, -20, -30, -40, -50, -60, - 70
m) from 1984 to 2019.

The available features are: year, month, day, depth, date, TEMP, QF TEMP, PSAL, QF PSAL, AMON,
QF AMON, NTRA, QF NTRA, NTRI, QF NTRI, PHOS, QF PHOS, SLCA, QF SLCA, CHLT QF; where QF
stands for quality flag.

Dataset I: All data

The cleaning process included removing all rows with missing values and the data before 1996 (due
to the missing data between 1989 and 1997). The Quality Flags (QF) as it would reduce the dataset
further.

New features were then added to the dataset. The surface pressure was assumed to be 1 atm and
the pressure at other depths p(z) =1 + z atm for each measurement. The mixed layer depth was
computed for each sample as the depth where the temperature varied 0.8°C from the temperature
at 10m. For samples where some measurements were removed in the cleaning process, the
reference temperature corresponded to the measurement closest to 10m. The integral gradient of
each feature was also obtained for each measurement. For samples with only one measurement,
the gradient was considered zero; with two measurements, the gradient was the same for both.
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The available features are: year, day, month, date, depth, TEMP, PSAL, AMON, NTRA, NTRI, PHOS,
SLCA, CHLT, GRAD TEMP, GRAD PSAL, GRAD AMON, GRAD NTRA, GRAD NTRI, GRAD PHOS, GRAD
SLCA, Pressure, MLD.

Dataset Il: Averaged data

Many biological processes are dependent on depth, either directly or indirectly. Chlorophyll
production, for instance, peaks at a subsurface layer depth and decreases as depth increases.
Besides, most parameter values show very small variations until the mixed layer depth, leading to
the assumption of conservative properties within the mixed layer. Averaging the data within the
mixed layer depth eliminates the depth bias, enabling a focus on the overall drivers of productivity in
that location, rather than depth dependent drivers. The second dataset was created with each row
representing the averaged data from the measurements of each sample, to evaluate how
eliminating the depth bias affects the results when compared to the first dataset.

Dataset Il and IV: Transformed data

Data analysis often benefits from transforming data into a normal distribution, as normality is a
requirement for many statistical techniques. The Box-Cox Transformation was applied to most of the
numerical features of Datasets | and Il to assess the impact of transforming data in the results, and
the transformed data was stored in Datasets lll and 1V, respectively. The Box-Cox Transformation is a
power transformation used to normalize positive data. For the features with negative values (such as
the gradients), the Cubic-Root Transformation was applied. For the year, the log transformation was
used due to the magnitude of the values. For the month, a 1-hot encoding transformation was
applied, adding 12 new features corresponding to each month.

The features of the new Dataset Ill and IV remain the same as the ones of | and Il, respectively, with
the addition of the 12 month columns.

Datasets V - VIII: Data limited to "normal" conditions (CHLT < 3 mg/m3)

More than 90% of the measurements in Dataset | had chlorophyll values below 3 mg/m3, which will
be regarded as the threshold for normal conditions. The measurements with chlorophyll values
above this threshold are therefore considered peak values or extreme conditions.

Four additional datasets were generated to investigate potential differences in the main drivers of
productivity in normal vs extreme conditions. For Dataset V, the data from Dataset | was limited to a
maximum chlorophyll production of 3 mg/m3. For Dataset VI, the data from Dataset V was averaged
within the MLD. Datasets VIl and VIII correspond to Datasets V and VI transformed as described in
the previous subsection.

It was not possible to do the same for the peak values due to the reduced amount of data.
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®

Tab. B1. Summary of the content of each dataset in the project

Limited Averaged Transformed
Dataset |
Dataset Il X
Dataset Il X
Dataset IV X X
Dataset V X
Dataset VI X X
Dataset VII X X
Dataset VIII X X X

B3 Regression Model: Drivers of chlorophyll production
B3.1 Random Forests Regression Model

Random Forests is a widely used ensemble machine learning approach for regression and
classification tasks. It combines multiple random decision trees, each trained on random sub- sets of
data, and calculates the output as the average prediction. By utilizing several random trees, this
method explores more possible predictors, improving the predictive accuracy of the model and
reducing overfitting. This approach can handle multiple dimensions (features) and non-linear
relationships, but it is less interpretable than single decision trees and requires significant
computational resources for training.

The datasets in this project are not excessively large, are high-dimensional and are likely to have
complex patterns between features, making Random Forests a suitable choice.
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The Random Forests Regression model predicts the value of a dependent variable based on the
independent variables, assigning each independent variable a quantitative measure of its
importance on the model’s outcome. In the context of this project, this approach allows us to
understand how each water parameter influences the chlorophyll production, and what are its main
drivers.

A baseline model was also computed for each dataset and compared to the RF model, to evaluate
the accuracy of the optimal models. This baseline model predicts the chlorophyll concentration for a
given sample as the average of the measured values for the same month in the year before. The
poor performance of the baseline model highlights the complex interactions between parameters
and a need for machine learning approaches.

B3.2 Training and Testing

A new Random Forests model was trained for each dataset (I to VIII) to evaluate the impact of each
modification (data transformation, averaging, peaks removal) on model performance. The sklearn
package in Python was used to implement and analyze all models.

For each dataset, the dependent variable was isolated from the relevant independent variables, and
the data was split into training and testing sets.

The best hyperparameters were obtained with RandomizedSearchCV and its fit function by
performing a randomized search with cross-validation to identify the optimal hyperparameters for
the model. Instead of testing all possible combinations, a specific number of random combinations
were tested and compared based on performance to decide on the best set of hyperparameters.

B3.2.1 Random training-testing data splitting

Two different approaches to training-testing were compared. The first one splits the data by
randomly sampling individual points from the dataset to achieve a specific training-testing ratio.
Most of this project uses 90% as training set and 10% as testing set. This ratio is adjusted to improve
the performance of the model, with the goal of achieving similar training and testing errors. The
cross-validation inside the hyperparameter tuning also sampled the testing-training data according
to the same sampling seed.

B3.2.2’Last 2 years’ training-testing data splitting

The second approach selects a given number of recent years as testing data and trains on the
remaining data. The cross-validation inside the hyperparameter tuning also used groups of
consecutive years to decide on the best model. The test score of each of these folds was computed
in the end to cross-validate and averaged to produce a metric of the model’s overall accuracy.

The different training-testing ratios between the first and the second methods might affect the
model performance, specially in smaller datasets, as larger training sets often promote overfitting
(see Discussion).
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B3.3 Model performance

The accuracy of the model’s predictions was assessed through the mean absolute error (MAE), mean
squared error (MSE), root mean squared error (RMSE), R-squared (R?) and the correlation (Corr)
between the predicted and real values. Only the last two metrics were considered when comparing
models.

The correlation and R? for each model’s prediction are presented in Figure B1 and B2, respectively.
In both cases, a higher value is associated with more accurate predictions and more reliable main
driver results.

R? comparison between models
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Fig. B1. R2 values for models trained with methods A1 and A2 across eight datasets (Dataset | to
Dataset VIII). Method Al is represented with darker bars; method A2 is represented with lighter
bars.
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Fig. B2. Correlation coefficients for models trained with methods Al and A2 across eight datasets
(Dataset | to Dataset VIII). Method A1l is represented with darker bars; method A2 is represented
with lighter bars.

Both Figure B1 and B2 indicate a better performance for Dataset |, where all data is being considered
without any additional processing. The performance of the models is very dependent on the size of
the dataset being used. When the size is reduced, by removing the peak values or by averaging the
data within the MLD, the accuracy of the predictions decreases. The effect of peak removal is seen
by comparing the correlation coefficient and the R? values between Datasets I-IV and Datasets V-VIII.
The effect of averaging the data can be seen by comparing Dataset | to Dataset II, Il to IV, V to VI
and VIl to VIII. The exception is the increase in accuracy after averaging the filtered data (Dataset V
to VI) with the method M2 model. Regardless of the accuracy loss caused by averaging the data, the
results allow more insightful conclusions on the drivers of productivity in the entire water column.

Method A1 (darker bars) generally produces better results than Method A2 (lighter bars). This is
likely because Al uses a random training-testing split, which increases the chances of a predicted
value being influenced by data points very close to those in the testing set, making predictions
easier. In contrast, method A2 relies on learned behavior from past measurements to make
predictions. A higher accuracy with method A2 means that the interactions between variables are
similar over time, which results in better predictions. The increase in accuracy with the M2 model
after averaging the filtered data (Dataset V to VI) leads to the assumption that the productivity of
the entire water column is more stable in time than the productivity at each depth layer. Besides,
method A2 seems more sensitive to reduced datasets than A1, likely due to an increased probability
of overfitting.

Contrarily to expectations, transforming the data before training the model decreased the accuracy
of the predictions. The exceptions are the increase in accuracy with method A2 after transforming
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the whole dataset (Dataset | to Il) and the filtered data (Dataset V to VII). Generally, data
transformation does not benefit the model’s performance in this project.

We can show that each dataset modification lowers model performance without substantially
changing feature importance results. In all cases, reduced dataset size aggravates the accuracy
decline.

B3.4 Features importance analysis

The analysis of feature importance offers insights into the key drivers of chlorophyll production. In
this project, the combination of top features that contribute to at least 50% of the output is
considered to represent the relevant drivers. Of those, features with an indi- vidual importance
greater than 10% are classified as main drivers. If a main driver has a considerably higher importance
than the others, it is regarded as a predominant driver.

The feature importances were obtained using the feature_importances attribute from sklearn and
the summary_plot function from shap. The former indicates the importance of each feature for the
predictive regression model, while the latter indicates the importance of each feature for individual
predictions. The shapley summary plot also illustrates the influence of both the magnitude and the
signal of each feature on the output.

The features importance plots for Dataset |, Il and Ill using method A1l are depicted in Figure B3 as an
example of the output of these functions.

Averaging the data within the MLD provides clearer insights into the main drivers of chlorophyll
production as expected. As shown in the center left pane of Figure B3, when analysing individual
measurement throughout the water column, salinity stands out as the predominant feature,
explaining more than 20% of the output, followed by the phosphate gradient, contributing half as
much. However, when considering the entire mixed layer as a whole, salinity remains the most
important feature (21%), but the mixed layer depth emerges as the second main driver (14%) and
the gradient of phosphate remains as the third main driver (11%). By averaging the data within the
mixed layer depth, the dominance of any single feature is reduced, allowing for other important
interactions to surface.

The Shapley Summary Plot on the right pane of Figure B3 illustrates how different feature values
affect the output. For instance, low salinity concentrations are highly favorable for chlorophyll
production, while high salinity has a negative effect.

By examining the chlorophyll production at each averaged sample, the main interactions are those
which have an impact on the entire mixed layer.

The main drivers of chlorophyll for each model were extracted from these functions. The results are
illustrated in Figure B4.
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Fig. B3. Features importance to the model (left) and to individual predictions (right). Results from
using approach Al in Dataset | (top), in Dataset Il (center) and in Dataset Ill (bottom). The features
that explain 50 % of the outcome are presented in bold, with the red line delimiting the 50 %.

This shows that salinity is the main driver regardless of the modifications to the dataset or methods
used. The phosphate gradient is also a relevant driver for all cases but the ones with Dataset VI, and
is @ main driver in five of those cases.
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Fig. B4. Main drivers for each dataset with respective importances, for models trained with method

Al (top) and A2 (bottom).
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Temperature is identified as a relevant driver for five out of eight datasets, including all datasets
where the peaks were removed. This indicates that productivity is dependent on temperature in
normal conditions, but not in peak conditions.

Likewise, silica is a relevant driver in all cases where the peaks were removed. The productivity of
this area in normal conditions is therefore dependent on silica as well. Silica is an essential
component of the structure of some phytoplankton species, which could explain this importance.

The gradient of salinity contributes approximately 10% to the overall prediction in all cases where
the data is averaged. This suggests that the gradient of salinity influences the overall productivity of
the area, rather than directly affecting the chlorophyll concentration at specific depths.

Similarly, the MLD is only selected as a relevant driver in models trained on averaged data (except
for Dataset VIII), being a main driver in the non-transformed datasets (Il and VI). Besides proving that
the transformation disrupts the results, this points to the relevance of the MLD to the productivity of
the water column. According to the respective Shapley Summary Plots, a low MLD can have a strong
positive effect on the chlorophyll concentration. With MLD as a proxy of turbulence and mixing, this
means that stratified waters (reduced mixing and turbulence) can benefit the production of
chlorophyll. However, the Shapley Summary Plots also show that higher concentrations are always
associated with lower MLD, and vice versa, but the impact of MLD is generally low. The influence of
this variable is likely dependent on other features, which would explain this variability.

The gradient of nitrites, the gradient of nitrates and the gradient of temperature are only relevant in
cases where the data was not averaged. Even though these drivers never contribute more than 9 %
to the overall prediction, they influence the chlorophyll concentration over the water column and
should be included in the prediction.

The year of the measurement had a relevant contribution to the prediction in the cases where the
data was the most reduced (Dataset IV and VIIl). On the contrary, the nitrite concentration is
relevant in the cases where there is the most data. The reason behind these two importances is not
clear, but is likely related to the size of the datasets relative to the remaining.

Only in models with Dataset | is the concentration of phosphate relevant to the overall prediction of
chlorophyll concentration.

B3.5 Discussion

Initially, this project addressed both the drivers of chlorophyll production in a given time and space,
and the drivers of productivity of the entire water column. Additionally, the drivers under normal
conditions were analyzed relative to the drivers in any circumstances, to investigate potential
differences.

The training of the sixteen models led to the unanimous conclusion that salinity is the primary driver
of productivity in this area, followed by the gradient of phosphate. Each modification to the original
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dataset revealed different insights, and the interpretation of this combined set of results offers a
good understanding of the dynamics in this area.

Under normal conditions, temperature and silica are the most relevant drivers, together with salinity
and the phosphate gradient. In the cases where there is no peak removal, these parameters have
little influence on both the productivity of the water column and the specific chlorophyll production.

The productivity of the water column is greatly influenced by the salinity gradient, the MLD
(particularly in non-transformed data) and the year (particularly in transformed data), besides
salinity and phosphate gradient.

Chlorophyll production depends mostly on the gradient of temperature, nitrites and nitrates, and on
temperature, together with salinity and the phosphate gradient. When considering all
measurements without further modifications, the nitrites and phosphates were relevant as well.

Transforming the data decreased the accuracy of the models without altering the fea- tures
importance results, motivating the use of non-transformed data in future analysis.

Regarding the training-testing data splitting methods, the first approach produced more accurate
predictions than the second approach. However, this approach is only suitable for analyzing entire
datasets to extract the interactions between the system’s components. When the aim is to predict
values based on past measurements-such as forecast or regime shift detection algorithms- the
second approach must be applied, because the first one is not applicable in these scenarios.

The method used to split the data into training and testing sets had little to no impact on the
features' importance. This strengthens the results, as two different approaches produced
similar/identical conclusions.

No explicit seasonal analysis was conducted. However, the month was included as a month to allow
for seasonal patterns to emerge, as an indirect seasonal analysis. The results pointed to inexistent
seasonal variations, with very low importances given to the month variables in all cases.

Further analyses include implementing different transformations with the aim of enhancing the
performance of the model; taking into consideration the quality flags in the original dataset;
conducting explicit seasonal analysis.

B4 Regime Shift Detection: Changes in drivers over time
B4.1 Regime Shift Detection Algorithm

This task requires a time-series; therefore, Datasets Il, IV, VI and VIl were used. The decision to use
four datasets, rather than selecting just one, was made to prevent potential bias in the results. By
applying the same method to all four datasets, a comparison of the results could be made, allowing
for more robust conclusions.
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This algorithm is designed to detect regime shifts in multi-dimensional data by analyzing prediction

performance errors. At each time step, a Random Forest Regression model is trained using the data
from the current regime (X samples) to predict the chlorophyll concentration for that time step. The
same hyperparameters were used for each of the four models (one for each dataset):

params ={'n_estimators’: 300, ‘min_samples_split’: 8, ‘'min_samples_leaf’: 3, ‘'max_features’: 'log2’,
"max_depth’: 11, ‘ccp_alpha’: 0, 'bootstrap’: False}

based on the hyperparameter tuning results from the models trained in the previous section.

Additionally, a baseline model is created, which predicts the chlorophyll concentration as the
measured value in the same month in the previous year. The accuracy of these predictions is
evaluated using the same metrics as before: MAE, MSE, RMSE, R?, and correlation coefficient. If the
Random Forest model performs worse than a given threshold (R?), the algorithm flags a regime shift.
The process continues iteratively until the last sample is reached.

The algorithm records the start date, end date, and feature importances for each identified regime.
At the end of the process, a new model is trained for each regime using all the samples within that
regime, and the feature importances are recalculated.

It is worth noting that the baseline model was initially designed to be the threshold for detecting
regime shifts. However, its very poor performance made it impossible for the RF model to
underperform relative to it. As a result, the threshold value was adjusted throughout this study to
investigate the stability of the system in terms of regime shifts.

B4.2 Model performance
B4.2.1 Detection error threshold

The first analysis investigated the effect of different detection error thresholds on the results,
namely the number of detected regimes. The datasets in use have 23 years of data, so that is the
maximum number of regimes that the algorithm can detect.

Figure B5 illustrates the influence of the detection error threshold on the number of detected
regimes.
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Number of regimes vs Detection error threshold
2 P s S S

» o

® 2 L ]
g 18
= 4
@ 16
©
o 14 ]
o
=
> 12 o —eo= Dataset ||
10 ¥ .4.? ‘ —e— Dataset IV
/ —e— Dataset VI
8 & —o— Dataset VIII
0.1 0.2 0.3 0.4 05 06 0.7

Detection error threshold

Fig. B5. Number of detected regimes in terms of the detection error threshold (R?) used, for the four
datasets in use. Dataset IV corresponds to Dataset Il after transformation; Dataset VIII corresponds
to Dataset VI after transformation

The lines for Datasets Il and 1V, as well as for Datasets VI and VIII, are closely aligned because they
are essentially the same data. Datasets IV and VIl are transformed versions of Datasets Il and VI,
respectively.

The number of detected regimes is strongly influenced by the detection error threshold. While a
dependency on the threshold was anticipated, it was unexpected that the number of regimes would
remain so high until the threshold was reduced significantly. For Datasets Il and IV, the average
duration of a regime increases to 2 years when regime shifts are identified at an R?<0.2. For Datasets
VI and VII, this occurs only when the threshold reaches R2<0.1. At detection error thresholds above
0.45, however, the number of detected regimes equals

22, suggesting a new regime for every year. This implies that the interactions between drivers and
chlorophyll production vary significantly from year to year, and making predictions based on the
previous year will produce poor results.

There are two interpretations for this behavior: (1) the system is inherently stable, with regime shifts
only apparent at very low error thresholds, or (2) the system is highly unpredictable, driven by a
complex combination of variables. The latter suggests that this approach may not be suitable for
detecting regime shifts in such a dynamic environment.
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